首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
文章利用莲花山生态监测站污染物观测数据与近地面气象数据,分析了2018年9月21日~10月18日深圳市出现连续臭氧(O3)污染过程期间,城区挥发性有机物(VOCs)体积分数与活性的变化特征;同时结合光化学箱模型对深圳市O3污染来源进行了量化分析.研究发现:阴雨天VOCs局地累积效应增强,O3生成主要受限于光照条件;偏东...  相似文献   

2.
针对大气颗粒物数浓度粒径分布的演变特征,于2005年夏季在上海下风方向站点太仓进行大约30d的观测.观测发现颗粒物生成-成长过程主要发生于混合充分、有区域代表性的气团中.应用颗粒物数浓度粒径分布数据计算了颗粒物凝结汇、可凝结性蒸气浓度、可凝结性蒸气源速率、颗粒物成长速率等过程特征量.颗粒物成长速率平均为6.0nm/h,可凝结性蒸气浓度平均为8.2′107/cm3,其源速率为3.1′106/(cm3×s).利用后向气流轨迹对影响颗粒物生成-成长过程的气团来源进行分析,并利用观测所得SO2浓度及过程特征量计算了不同气团影响下气态硫酸蒸气对颗粒物成长速率的贡献:长江三角洲城市群气团影响下硫酸贡献量最大,为59%,北方气团影响下硫酸贡献量次之,超过53.8%,受南方气团影响下硫酸贡献量最低,为30%.  相似文献   

3.
黄丹丹 《环境科学学报》2018,38(6):2262-2269
利用气溶胶质谱仪在上海典型城区开展了对夏季亚微米颗粒物(PM_1)浓度及化学组分的实时在线观测,旨在捕捉污染过程、研究二次污染物的形成机制及影响因素.结果发现,上海城区二次污染物,包括二次有机气溶胶(SOA)、硫酸盐与硝酸盐是PM_1的主要组成,占比为82.5%,其中,SOA(28%)、硫酸盐(27%)与硝酸盐(27%)的比重相当.观测期间捕捉到了一个清洁期与两次污染的生消过程,清洁期的二次有机与无机污染物显著受到局地日间光化学转化过程的影响,污染过程根据气象条件的不同可以分为不同的阶段,包括传输期、累积期与消散期.传输期与消散期的局地光化学过程对SOA的形成有显著的促进作用,累积期SOA受到颗粒相水含量与区域传输的共同作用.污染期硝酸盐浓度显著上升,液相反应是促进污染期硝酸盐生成的重要因素,而污染期硫酸盐主要受到区域传输的影响.  相似文献   

4.
上海地区光化学污染中气溶胶特征研究   总被引:7,自引:0,他引:7  
利用上海地区2011~2013年9个大气成分及气象观测站点臭氧(O3)、颗粒物(PM1、PM2.5、PM10)、气溶胶粒子谱观测资料以及气象数据,分析了上海不同功能区臭氧超标时的频率分布及各类污染物浓度特征.结果表明,上海地区夏季光化学污染严重,周边城区臭氧污染要明显高于中心城区,不同功能区污染情况差异较大,金山化工区和崇明生态岛光化学污染较为严重.通过分析光化学污染前后气溶胶变化特征可知,当出现光化学污染时,各站气溶胶浓度明显升高,特别是PM1浓度增加显著,且PM1/PM2.5比未出现臭氧污染时的比例明显升高.表明随着光化学反应的增强,二次气溶胶生成明显增多.因此可将PM1作为光化学污染的判定指标之一.  相似文献   

5.
天津重污染期间大气污染物浓度垂直分布特征   总被引:14,自引:7,他引:7  
利用天津气象局255 m铁塔垂直4层观测平台(高度分别为3、40、120和220 m),对各层大气中的NOx、O3、SO2浓度(均以φ计)和PM2.5浓度(以ρ计)进行了连续观测,结合同步气象要素分析了2010年10月3—11日天津发生的一次重污染事件.结果表明:在此次重污染事件期间,一次及二次污染物浓度的垂直梯度变化差异显著,φ(NO)、φ(NO2)和ρ(PM2.5)随高度上升而降低,φ(NO)在3~120和120~220 m的递减率分别为58.0%和8.5%,ρ(PM2.5)在3~220 m递减率为13.0%;而φ(O3)和φ(SO2)平均值却随高度的上升而增加,其中φ(O3)在3~40、40~120和120~220 m的增长率分别为108.0%、19.1%和56.4%,φ(SO2)在3~220 m的增长率为25.0%. NOx主要来源于局地近地面污染源的排放;SO2主要来源于高架点源的排放,O3则来源于局地光化学过程积累;PM2.5受局地排放源和光化学过程的双重影响,垂直梯度变化最不显著. 不利于扩散的气象条件使以局地排放为主的污染物积累升高及其伴随的光化学反应造成了天津此次重污染事件.   相似文献   

6.
2009年夏季黄山云雾水化学特征及来源分析   总被引:2,自引:0,他引:2       下载免费PDF全文
文彬  银燕  秦彦硕  陈魁 《中国环境科学》2012,32(12):2113-2122
利用09年夏季在黄山光明顶气象站采集的25个云雾水样本及气象站常规资料,分析了云雾过程雾水的化学特征、污染来源与微物理特性.结果表明,观测期间云雾水呈弱酸性,平均值pH值为6.4,主要的离子浓度由大到小排列为:SO42->NH4+>Ca2+>NO3->Na+>Cl-,表明二次污染物对黄山云雾水的贡献较大.统计分析显示,各云雾过程中雾水组分变化,主要缘于不同云雾过程中污染源与海洋源的贡献率不同.结合后向轨迹进一步分析显示,影响气团主要来源于海洋和周边地区,不同气团影响下雾水离子组分及云雾微物理特征差别明显.  相似文献   

7.
2014年河北中南部两次重霾天气成因分析   总被引:4,自引:0,他引:4  
利用河北省环保局环境监测站提供的污染物浓度数据及常规气象观测数据、NCEP再分析资料,结合HYSPLIT4.9后向轨迹模式,对2014年10月上旬发生在河北省的2次大范围的重霾天气特征和成因进行综合分析.结果表明,这2次重污染天气过程PM2.5地面浓度最大值出现在邢台,为507μg/m3,水平能见度不足1km.均压场的分布和较为平稳的高空形势为2次霾天气提供了有利的气象背景.高湿,静小风以及较低的混合层高度不利于污染物扩散,是导致这两次重污染天气持续的主要原因.结合卫星火点及污染物来源分析表明,河北南部及周边省份的秸秆燃烧加重了第2次过程的污染,污染气团的输送对区域性重霾天气产生重要影响.  相似文献   

8.
2013年12月我国中东部地区发生多场大范围高强度的颗粒物污染. 期间,本研究采用在线连续观测手段测量了上海市城区大气中气态污染物、颗粒物的质量浓度、细颗粒物的化学组分等,获得了浮尘污染、灰霾污染、雾霾污染、长距离传输的过境污染过程中颗粒物的污染特征变化. 观测结果显示,雾霾污染最为严重,PM10和PM2.5日均最大浓度分别达到536 μg ·m-3和411 μg ·m-3,PM2.5/PM10高达76.7%,高湿度加强了大气颗粒物中NO3-、SO42-、NH4+等二次组分的生成. 浮尘污染中PM2.5的Ca2+浓度在所有污染过程中最高,且PM2.5中一次组分比重明显上升. 长距离传输的过境污染中PM2.5的SO42-浓度最高,且增长速度很快. 同时本研究还采用Hysplit反向轨迹结合聚类分析方法,得到了不同污染过程中到达上海的主要气团轨迹,并结合上海城区在线观测的PM2.5及其化学组分浓度数据,探讨了不同气团下PM2.5组分特征差异和不同污染过程的大致来源. 结果表明,观测期间上海的气团轨迹可以聚类为六类. 其中,移动速度快的cluster6出现时,上海市不易出现颗粒物污染; 始于蒙古的cluster2和cluster3导致上海出现沙尘污染,该气团下PM2.5/PM10的比例都较低,且PM2.5中Ca2+浓度较高. 移动缓慢的cluster5和cluster4有利于污染物的二次生成,静稳天气同时加剧了污染物的累积,加上他们经海上夹带水汽传输至上海,这些不利条件是导致上海出现严重污染的关键因素.  相似文献   

9.
针对2013年12月和2014年12月南京地区秋冬季的2次典型霾污染过程,利用地面观测资料和常规气象资料,对这2次霾发生前后以及发生期间的天气环境、天气条件进行观测、分析。该文还通过HYSPLIT-4观察2次污染气团的来源,并利用CALIPSO分析2次污染期间气溶胶组分,发现由南京及周边地区形成、并在局地停留发展壮大的污染气团容易形成重大霾污染事件,污染物主要来源于当地的工厂、交通、建筑等;由北方携带大量污染物的气团入侵到南京地区,容易造成南京的霾污染天气,并且污染物组分以灰尘、污染性灰尘为主。由于天气条件的不同,2次污染发生期间的污染程度存在着巨大的差异。通过文章研究,发现稳定的气象条件容易发生霾天气,特别是当近地层风速较弱、混合层高度低、出现强逆温以及产生弱上升运动时,容易发生严重性霾污染天气。研究还发现各气象要素的共同作用导致了霾污染程度的变化。  相似文献   

10.
天津市作为京津冀大气污染传输通道及环渤海经济带的重要城市,其环境空气中细颗粒物的化学组成特征及来源具有重大研究价值.本研究于2017年8月利用单颗粒气溶胶质谱仪(SPAMS)采集了天津市津南区环境受体中细颗粒物的整月数据,旨在描述天津市夏季环境空气中细颗粒物的组分特征,定性判断主要污染源类.通过ART-2a聚类、合并后获得EC类颗粒,Fe-NO3颗粒,Na-K颗粒和金属类颗粒等12种颗粒类型,并对各类型颗粒在粒径分布和日变化上的特征进行了研究.EC颗粒随粒径增长数浓度占比降低,扬尘类颗粒和Fe-NO3颗粒相反;日变化结果显示光化学反应能够影响3类EC颗粒的日变化趋势,而Fe-NO3颗粒日间占比提升与白天工业生产活动排放有关.对观测时段内主要来向气团上颗粒物组成进行研究,监测点位夏季主要受西北和西南方向气团来向影响,当点位主要受西南方向上气团影响时,燃煤源的颗粒影响较大,而东南方向气团发生频率较高时,生物质燃烧源颗粒与海盐源颗粒贡献相对较高.  相似文献   

11.
Beijing sufered from serious air pollution in October, 2011 with the occurrence of three continuous episodes. Here we analyze the pollution status of particulate matter, the relationship between the gaseous pollutants, physical and chemical properties of single particles, and the profile of watersoluble ions in PM2.5during the three episodes. Regional and photochemically aged air masses, which were characterized as having high values of O3and SO2, were hypothesized to have played a dominant role in the first episode. After mixing local air masses with freshly-emitted primary pollutants, the concentration of NOx continued to increase and the size of SO4 2, NO3 and NH4 +in the particle population continued to become smaller. The amount of elemental carbon-rich and organic carbonrich particles in the scaled single particles(0.2–2 μm) and water-soluble K+in PM2.5also increased in the episodes. All the available information suggests that the biomass or fuel burning sources in or around Beijing may have had a huge impact on the last two episodes.  相似文献   

12.
选取京津廊三市交界处,于2019年和2021年的7月开展PAN (过氧乙酰硝酸酯)在线监测、空间来源解析与反应产率研究,以评估北京、天津、廊坊不同城市气团的光化学污染潜势及近年变化趋势.观测结果表明,三市交界处2021年夏季PAN浓度均值(0.89±0.21)×10-9,较2019年同期(2.45±0.71)×10-9下降63.8%.PAN在夏季大气寿命很短,其在该观测点浓度主要受周边城市气团光化学反应控制,其产率呈现明显双峰特征,峰值水平在2019年和2021年的7月分别为3.08×10-9/h、1.75×10-9/h,2021年较2019年下降43.18%,与PAN的年际变化趋势吻合.该观测点PAN的潜在源贡献函数(PSCF)高值区在2个观测月均出现在东南方向50km范围内,显示了天津市气团输送对该观测点PAN浓度的显著贡献.当该观测点受天津城市气团绝对影响时,PAN生成潜势和前体物NO2均呈最高水平,约为受北京城市气团影响时的2.03倍和2.01倍,为受廊坊城市气团影响时的1.53和1.21倍.可见,天津城市气团具有最高的光化学污染潜势,其与北京气团的差异主要源自NOx,而与廊坊气团的差异则来自NOx和VOCs两类前体物.  相似文献   

13.
为分析APEC会议前后北京地区PM2.5变化特征,利用中国科学院大学雁栖湖校区超级站在2014年10—12月的连续观测数据,对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析. 结果表明:APEC会议期间北京地区减排效果显著,ρ(PM2.5)平均值比会前下降了60.5%. 气象条件对污染物扩散起到积极作用,APEC期间平均风速为1.40 m/s,平均相对湿度为31.9 %,近地面气象条件优于APEC会前、会后. 北京地区受到外来污染物输送的影响,在2.00~3.00 m/s的南风下易发生来自南部地区的PM2.5和SO2输送. APEC会议期间北京地区主要受来自西北地区的高速、高海拔气团控制,其出现频率为39.6%,远低于APEC会前 (15.9%)和会后(20.8%),而来自南部地区的低速、低海拔污染气团的出现频率仅为2.1%,扩散条件总体良好. 研究显示,除了减排措施有效削减了污染物排放以外,有利的气象条件也是APEC会议期间北京地区保持良好空气质量的重要因素.   相似文献   

14.
2014年10月北京市4次典型空气重污染过程成因分析   总被引:12,自引:0,他引:12       下载免费PDF全文
采用数值模拟与观测资料相结合的方式,对2014年10月北京市4次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析. 结果表明,京津冀区域稳定的气象条件是形成空气重污染的主要原因,4次重污染过程大气条件均不利于污染物扩散,表现为大气层结稳定,近地层逆温(平均逆温强度为2.26 ℃/100 m)明显,风速(平均值为1.52 m/s)小,相对湿度(平均值为80.75%)大. 在4次重污染过程中8—11日污染最重,ρ(PM2.5)日均值平均为264 μg/m3,并且区域输送对北京贡献率最大,平均值为63.75%;24—25日污染程度次之,逆温最强,逆温强度达5.94 ℃/100 m;18—20日重污染中北京ρ(PM2.5)高值(>200 μg/m3)区主要集中在该市西北部地区;30—31日污染相对较轻,ρ(PM2.5)日均值最高只有154 μg/m3. 数值模拟表明,在4次典型重污染过程中,来自南方(包括河北、河南和山西西部等地)的外来污染物输送对北京PM2.5贡献较大,外来贡献率分别在42.36%~69.12%之间,同时北京本地也存在较强的二次无机盐及有机物转化过程.   相似文献   

15.
北京一次严重雾霾过程气溶胶光学特性与气象条件   总被引:1,自引:0,他引:1  
对北京地区2013年10月2~7日一次严重雾霾过程中的气溶胶光学特性开展研究,分析了气象条件对雾霾过程的影响,并结合HYSPLIT模型分析污染物的来源.结果表明,在污染天气中气溶胶光学厚度、?ngström波长指数、细模态体积尺度谱峰值浓度远高于清洁天.10月5日雾霾最为严重,440nm波长处气溶胶光学厚度高达3.89.在雾霾发生前后,单次散射反照率日均值随波长增大而增大,而在10月5日,单次散射反照率值随波长增加先增大后减小,在675nm波长处达到最大值0.965.雾霾过程中大气气溶胶以强散射型细粒子为主,人为因素贡献较大,且受气象条件影响明显.  相似文献   

16.
利用2017~2019年晋城市和长治市冬季PM2.5逐时浓度资料、地面风场数据等,结合HYSPLIT轨迹模型和中尺度数值模式WRFV4.2分析了晋东南地区冬季PM2.5污染的特征和传输特点.结果表明,晋城市冬季PM2.5污染程度高于长治市.受地形影响,晋城市地面盛行偏南风、偏北风和西北风,污染方向主要为偏南风和偏北风;长治市近地面盛行偏南风,该风向污染频率最高.影响晋城市和长治市污染的潜在源区主要分布在偏西、东北和东南方向,偏西气流来自陕西省中部,东北气流来自河北省西南部,东南气流来自河南省中东部.污染经过晋东南地区主要影响山西省中南部和北京南部.通过数值模拟流场,结合潜在源区和影响区域的分析结果,在均压场或高压后部的天气形势下,晋东南地区污染输送路径包括来自东北方向(河北省西南部一带)的气流,沿长治市东北部的滏口陉向晋东南地区输送污染物及沿太行山东麓向南在晋豫交界处的太行陉发生转折向晋东南地区输送污染物;来自东南方向(河南北部及东部)的气流输送和来自偏西方向(陕西中南部)的气流输送.污染物经过晋东南地区向北输送至山西省中南部,部分经过山西省中东部的井陉输送至北京南部.  相似文献   

17.
采用天气学分析和GRAPES-CUACE气溶胶伴随模式相结合的方式,探讨了北京市2016年2月29日~3月6日一次PM2.5重污染过程的大气环流特征、污染形成和消散原因,并利用伴随模式追踪了造成此次重污染过程的关键排放源区及敏感排放时段.结果表明:此次重污染过程北京市PM2.5浓度存在明显日变化,在3月4日20:00达到污染峰值,观测数据显示海淀站PM2.5浓度达到506.4μg/m3.形成此次重污染过程的主要天气学原因是北京站地面处于低压中心,且无冷空气影响,风速较弱,逆温较强,大气层结稳定,混合层高度较低,500hPa西风急流较弱,污染物水平和垂直扩散条件差,大气污染物易堆积;此次过程中,500hPa短波槽过境、边界层偏南风急流和冷空气不完全渗透导致了本次严重污染PM2.5浓度的短暂下降.伴随模式模拟结果表明,此次污染过程目标时刻的污染浓度受到来自河北东北部和南部、天津、山西东部、以及山东西北部污染物的共同影响,目标时刻PM2.5峰值浓度对北京本地源响应最为迅速,山西响应速度最慢;北京、天津、河北及山西排放源对目标时刻前72h内的累积贡献比例分别为31.1%、11.7%、52.6%和4.7%.北京本地排放源占总累积贡献的1/3左右,河北排放源累积贡献占一半以上,天津和山西分别占1/10和1/20,河北源贡献占主导地位,天津和山西贡献较小;目标时刻前3h内,北京本地源贡献占主导地位,贡献比例为49.3%,目标时刻前4~50h内,河北源贡献占主导地位,贡献比例为48.6%,目标时刻前50~80h,山西源贡献占主导地位,贡献比例在50%以上.  相似文献   

18.
采用垂直观测、地面观测、PM2.5化学组分观测和气团轨迹分析等手段,对2015年10月份北京市一次大气重污染过程进行了分析.结果表明,重污染时近地面层气溶胶消光系数升高,污染物主要积聚在600m以下.重污染期间气象要素特征为:风场弱,湿度大,地面受弱气压场控制,边界层高度极低.重污染期间不同站点PM2.5浓度变化趋势和峰值出现时间较为一致;大部分时段PM2.5中NO3-浓度明显高于其他组分;周边区域受重污染的影响面积相对较小,高浓度区主要集中在北京市及近周边地区.多手段的观测结果以及PM2.5浓度与气象要素和各化学组分的相关性分析的结果均表明:区域传输,包括秸秆焚烧,对本次北京市重污染天气过程具有一定的影响,但本地机动车排放在不利气象条件下的积累、二次转化以及垂直方向空间的极端压缩是导致重污染的主要原因.  相似文献   

19.
肇庆市一次典型污染天气的污染物来源解析   总被引:1,自引:1,他引:0  
利用污染物及气象观测数据对肇庆市2018年12月17~23日大气污染过程进行了分析,采用了CMAQ-ISAM模型以及混合受体模型对本次大气污染来源进行了解析研究.结果表明,12月19~21日肇庆地区受近地面弱气压影响而形成的较为不利的污染物扩散条件,是肇庆大气污染过程的诱导因素;在本次污染发生前的清洁时段,肇庆污染主要来自于本地及清远,其贡献率分别为19. 2%和10. 7%,而受江西、湖南、湖北以及陕西等地的远距离污染物传输作用影响约为64. 5%;在污染时段,随着地面高气压场南移,肇庆地区受珠三角主要城市和粤东城市的区域传输贡献明显,肇庆、佛山、东莞、广州和惠州贡献率依次为25. 5%、14. 8%、9. 8%、9. 5%和5. 3%,河源、梅州、汕尾、揭阳、汕头和潮州这6个广东省东部城市贡献率共计13. 7%,而受福建、江西以及长江三角洲等地的远距离污染物传输作用影响约为32. 9%,且经过海上通道传输的污染物贡献更为显著.因此,输送到海面上的气溶胶颗粒经吸湿增长后回到陆地,是本次肇庆污染天气的主要成因之一.  相似文献   

20.
为了解河北省涞水县颗粒物污染特征,采用单颗粒分析技术扫描电镜-X射线能谱法和气团后向轨迹分析技术对该县2015年3个典型污染时段〔即正常管控、严格管控(2015年阅兵期间)及发生严重颗粒物染污〕采集的7个大气颗粒物样品进行了分析表征和来源解析.共测量了1 506个粒径≥0.5 μm的单颗粒,其中粒径小于2.5 μm的颗粒占98%以上,测量结果揭示了细颗粒污染特征.结果表明:①碳质颗粒为主要颗粒物种类,其检出数目占比在90%以上.②非供暖期严格管控时段,当地居民日常生活产生的球形碳质颗粒检出数目占比最高.③非供暖期正常管控时段,机动车排放的碳质集合体颗粒检出数目占比最高,交通污染贡献最大.④供暖期球形碳质颗粒检出数目占比最高,含硫颗粒检出数目占比相对增加,燃煤的贡献最大.3个采样时段48 h气团后向轨迹分析结果表明,在空气质量良好、颗粒物污染水平较低的情况下,影响研究区域空气质量的主要是本地源;雾霾天气(处于严重颗粒物污染时段)时,西南方向外来源和本地源共同构成研究区域的颗粒物污染状态.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号