首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

2.
一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动   总被引:1,自引:0,他引:1  
利用新型固定生物膜一活性污泥反应器处理实际污泥消化液,通过接种短程硝化污泥和厌氧氨氧化生物膜填料,逐渐提高进水氨氮浓度并控制溶解氧浓度在0.11~0.42mg/L,系统在65d内实现了短程硝化-厌氧氨氧化反应的启动.反应器系统稳定运行阶段具有良好的污染物去除效果,进水COD和氨氮浓度为921和1120.8mg/L,COD、氨氮和总氮去除率分别为66.8%,99.0%和94.4%,总氮去除负荷为0.27kgN/(m3·d).试验表明采取逐步提高进水中消化液比例的策略,有利于一体式厌氧氨氧化工艺的快速启动.进一步分析发现系统同时存在厌氧氨氧化和反硝化的脱氮途径,对总氮去除的贡献率分别为67.4%~91.1%和8.9%~32.6%.  相似文献   

3.
硝化菌群强化修复氨氮污染河流水体研究   总被引:2,自引:0,他引:2  
利用已筛选的硝化菌群分别以游离菌和生物膜两种方式对成都市南干堰氨氮污染水体进行生物强化修复初步研究.结果表明,当进水氨氮浓度为23.91~24.27mg·L-1,在25℃、150r·min-1条件下,投加游离菌群36h后,氨氮去除率达95%,而在不添加游离菌的对照中,氨氮浓度没有下降.采用生物膜法,室温条件下,当进水氨氮浓度为8.00~18.38mg·L-1,水力停留时间(HRT)2~4h时,出水氨氮浓度为0~1.11mg·L-1,氨氧化负荷最高可达0.139kg·m-3·d-1(以N计,下同),氨氮去除率达90%以上;;当进水氨氮浓度为7.84~14.62mg·L-1,HRT为0·5~1.0h时,修复后出水氨氮浓度为1.90~7.47mg·L-1,氨氧化负荷最高可达0.261kg·m-3·d-1;;当进水氨氮浓度稀释到3mg·L-1左右,氨氮可完全被去除,修复后水体几乎没有亚硝酸盐残留.采用PCR-DGGE分析生物膜上的微生物菌群,发现生物膜中不仅有硝化菌群生长,还包括其它与氮转化相关微生物菌群.该实验结果表明,运用硝化菌群进行氨氮污染水体强化修复具有显著的效果,实际应用中可根据污染水体氨氮浓度以及氨氧化负...  相似文献   

4.
在序批式生物膜反应器内接种以氨氧化细菌和反硝化细菌为主的活性污泥,期望实现亚硝酸型同步硝化反硝化生物脱氮,处理城市污水。在进水TN为30~40 mg/l、氨氮为30~35 mg/l、COD为250 mg/l左右、pH值为7.50~7.80、温度为25±1℃等条件下,研究不同溶解氧对总氮去除率和亚硝酸盐氮积累率的影响,结果表明,在溶解氧浓度为1.5~2.5 mg/l时,可以实现稳定的亚硝酸型硝化反硝化,总氮去除率为75%左右,亚硝酸盐氮积累率为65%~82%。  相似文献   

5.
BTMT生物膜载体对厌氧氨氧化反应器启动的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用两套厌氧氨氧化反应器R1和R2,研究了BMTM生物膜载体对厌氧氨氧化工艺启动特性的影响.结果表明,R1采用UASB反应器启动厌氧氨氧化反应器,经140d运行,对氨氮和亚硝酸盐氮的去除率仅达到54.6%和58.8%,氨氮与亚硝酸盐氮去除负荷之和仅为0.09kg/(m3×d),随后,向其上部投加0.6L BMTM载体,经过26d运行,氨氮及亚硝酸盐氮去除率分别迅速提升至92.5%和97.4%,R1的启动速度较之前有明显提高;R2采用BMTM载体启动上流式填料床生物膜反应器厌氧氨氧化工艺,经过83d的运行,氨氮及亚硝酸盐氮去除率分别达到83.6%和89.4%,氨氮与亚硝酸盐氮去除负荷之和达0.22kg/(m3×d),启动速度较R1大幅提高.  相似文献   

6.
采用膜生物反应器(MBR)研究了厌氧氨氧化细菌在富集过程中的活性变化,在启动全程自养脱氮(CANON)工艺中以恒定曝气量,通过优化停曝比实现氨氧化细菌(AerAOB)和厌氧氨氧化细菌(AnAOB)协同脱氮并且有效抑制亚硝酸盐氧化菌(NOB)的活性,然后添加有机物(乙酸钠)逐步启动同步亚硝化-厌氧氨氧化耦合异养反硝化(SNAD)工艺.结果表明,在厌氧氨氧化细菌富集过程中,通过不断缩短水力停留时间(HRT)提高进水氮负荷的方式强化厌氧氨氧化细菌活性,其平均活性由0.603mgN/(h·gVSS)提高到了8.1mgN/(h·gVSS);当恒定曝气量为50mL/min,停曝比为4:10(min:min)时,AerAOB和AnAOB对氨氮的去除量分别占总氨氮去除量的58.8%和41.2%,NOB氧化亚硝态氮的量占总硝态氮生成量的15.3%,成功抑制了NOB的活性;当C/N比为0.5,调整停曝比为4:15后,反硝化过程氮去除量占总氮去除率的20.9%,厌氧氨氧化过程氮去除量占总氮去除率的79.1%,实现了AerAOB、AnAOB和反硝化细菌(DNB)协同脱氮的目的.  相似文献   

7.
猪场废水厌氧氨氧化脱氮的短程硝化反硝化预处理研究   总被引:6,自引:5,他引:1  
王欢  李旭东  曾抗美 《环境科学》2009,30(1):114-119
在常温(13~20℃)、不调节pH的条件下,采用短程硝化反硝化预处理低C/N(2左右)猪场废水,考察了反硝化与亚硝化过程,并以经过短程硝化反硝化预处理的猪场废水为进水,分析了厌氧氨氧化的脱氮效果.结果表明,采用短程硝化反硝化预处理低C/N猪场废水,可以达到去除部分COD、部分脱氮、控制出水氨氮和亚硝态氮浓度之比在1∶1左右、pH在7.5~8.0左右的目的,为厌氧氨氧化创造了进水条件,全程COD和总氮平均去除率分别为64.3%和49.1%;经过短程硝化反硝化预处理的猪场废水,其厌氧氨氧化脱氮效果稳定,氨氮、亚硝态氮、总氮的平均去除率分别为91.8%、99.3%、84.1%.  相似文献   

8.
赵晴  刘梦莹  吕慧  梁俊宇  刁兴兴  张鑫  孟了 《环境科学》2019,40(9):4195-4201
本研究从某垃圾填埋场计划将现有的垃圾渗滤液短程硝化反硝化脱氮工艺改造为短程硝化反硝化耦合厌氧氨氧化工艺的实际需求入手,以短程硝化反硝化污泥作为接种污泥,在上流式厌氧污泥床反应器(UASB)中完成厌氧氨氧化启动.探究反应器运行中的脱氮效能、氮容积负荷和氮去除负荷情况,并利用16S rRNA基因序列分析技术对长期运行条件下系统中微生物群落结构演替进行分析.结果表明,反应器经历了149 d后成功启动厌氧氨氧化,稳定运行后的进水总氮容积负荷达到4 000. 00 mg·(L·d)-1,总氮容积平均去除速率达到3 885. 76 mg·(L·d)-1,系统氨氮和亚硝酸盐氮的平均去除率均超过了95%.运行第250 d时,系统的生物多样性减少,门水平上厌氧氨氧化主要菌群Planctomycetes的丰度达到了54. 94%;属水平上Candidatus Kuenenia为主要菌属,其相对丰度达到了49. 66%.结果证明,在短程硝化反硝化基础上耦合厌氧氨氧化实现垃圾渗滤液深度处理的升级改造工艺具有可行性.  相似文献   

9.
缺氧MBBR耦合部分厌氧氨氧化强化城市生活污水深度脱氮   总被引:5,自引:4,他引:1  
缺氧MBBR是强化传统城市污水处理系统脱氮的一种方法,本研究通过向城市污水后置反硝化SBR中投加填料构建了缺氧双污泥系统,实现了城市生活污水部分厌氧氨氧化深度脱氮.在250d的运行中脱氮性能逐渐提高并实现稳定,出水总氮在5 mg·L~(-1)左右. 211~250 d的平均硝氮、氨氮和总氮去除率分别为(97. 7±2. 9)%、(93. 3±2. 9)%和(94. 3±2. 7)%.长期运行中观测到氨氮和硝氮的同步去除.针对氨氮去除途径进行分析,系统同化、硝化作用微弱.缺氧MBBR中存在厌氧氨氧化活性且对脱氮有不可忽视的作用.实时定量PCR结果进一步说明缺氧MBBR中厌氧氨氧化菌富集,特别是缺氧填料生物膜中厌氧氨氧化菌丰度由初始的4. 37×10~7copies·g~(-1)增长到了2. 28×10~(10)copies·g~(-1).本研究表明缺氧填料生物膜在厌氧氨氧化的富集强化城市污水深度脱氮中或许具有可应用的潜能.  相似文献   

10.
城市生活污水SNAD工艺的启动研究   总被引:3,自引:0,他引:3  
采用SBR反应器,以城市生活污水为原水,进行同步亚硝化、厌氧氨氧化、反硝化(SNAD)工艺的启动研究.首先接种厌氧氨氧化(anammox)颗粒污泥,在高曝气量下(500L/h)培养得到亚硝化颗粒污泥,然后再次接种anammox颗粒污泥,在低曝气量下(40L/h)培养得到SNAD颗粒污泥.在亚硝化稳定期,氨氮平均去除率达到94%,亚硝态氮平均积累率达到95%.在SNAD稳定期,总氮平均去除率为85%.批试实验结果表明,亚硝化稳定期亚硝化颗粒污泥的好氧氨氮和亚硝态氮氧化活性分别为为0.234和0kgN/(kgVSS×d).SNAD颗粒污泥的厌氧氨氧化总氮去除、亚硝态氮反硝化、好氧氨氮氧化、好氧亚硝态氮氧化活性分别为0.158、0.104、0.281、0kg/(kgVSS×d),其中硝态氮反硝化活性在0~120min和120~360min内分别为0.061和0.104kg/(kgVSS×d).扫描电镜显示,SNAD颗粒污泥表面以短杆状菌和球状菌为主,可能为好氧氨氧化菌(AOB)和反硝化菌,颗粒污泥内部以火山口状的细菌为主,可能为anammox菌.  相似文献   

11.
部分亚硝化-厌氧氨氧化耦合工艺处理污泥脱水液   总被引:16,自引:1,他引:15       下载免费PDF全文
在缺氧滤床+好氧悬浮填料生物膜工艺中实现部分亚硝化,然后进行厌氧氨氧化(ANAMMOX),考察其对高含氮、低C/N污泥脱水液的处理能力.结果表明,亚硝化反应器在15~29℃、DO 6~9mg/L条件下,通过综合调控进水氨氮负荷(ALR)、进水碱度/氨氮、水力停留时间(HRT)等运行参数,可以调节出水(NO2--N)/(NH4+-N)的比率,能够较好地实现部分亚硝化反应以完成厌氧氨氧化.当进水ALR为1.16kg/(m3·d),进水碱度/氨氮为5.1时,出水(NO2--N)/(NH4+-N)在1.2左右,(NO2--N)/(NOx--N)大于90%,进入ANAMMOX反应器的氮物质去除率达到83.8%.  相似文献   

12.
混合污泥接种的厌氧氨氧化处理污泥脱水液的启动   总被引:9,自引:1,他引:8       下载免费PDF全文
采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,以污泥脱水液经短程硝化处理后水质为进水,在温度(30±0.2)℃, pH值7.3~7.9,初期进水氨氮、亚硝氮容积负荷分别为0.07, 0.10kg/(m3×d)条件下,经过24d运行,氨氮和亚硝氮得到稳定同步去除,186d时TN去除负荷达0.99 kg/(m3×d).启动初期,氨氮、亚硝氮进水浓度分别为20,30mg/L,二者浓度随去除量增加而逐级增加,最高分别达到157,216mg/L;启动过程中,系统受到O2抑制以及O2和亚硝氮基质的连续抑制,分别经过了约10d和30d才得以恢复. 厌氧氨氧化(ANAMMOX)反应与反硝化反应可以共存于系统中,产气量与总氮去除呈正比关系,可及时地指示系统运行状态,对气体成分检测,氮气含量在99.8%.在稳定期ANAMMOX反应呈pH值升高而碱度略有降低.接种混合污泥、低基质负荷启动ANAMMOX,可30d内实现稳定的氨氮和亚硝氮同步去除,180d左右启动成功.  相似文献   

13.
Anaerobic ammonium oxidation(ANAMMOX) is a recently developed process to treat ammonia-rich wastewater. There were numerous articles about the new technology with focus on the ammonium-rich wastewater treatment, but few on advanced municipal wastewater treatment. The paper studied the anaerobic ammonium oxidation (ANAMMOX) process with a down flow anoxic biofilter for nitrogen removal from secondary clarifier effluent of municipal wastewater with low COD/N ratio. The results showed that ANAMMOX process is applicable to advanced wastewater treatment with normal temperature as well as ammonia-rich high temperature wastewater treatment. The results indicated that ammonia removal rate was improved by raising the nitrite concentration, and the reaction rate reached a climax at 118.4 mgN/L of the nitrite nitrogen concentration. If the concentration exceeds 118.4 mgN/L, the ANAMMOX process was significantly inhibited although the ANAMMOX bacteria still showed a relatively high reactivity. The data also indicated that the ratio of NO2^- -N:NH4 * -N = 1.3:1 in the influent was appropriate for excellent nitrogen removal. The pH increased gradually along the ANAMMOX biofilter reactor. When the ANAMMOX reaction was ended, the pH was tend to calm. The data suggested that the pH could be used as an indicator to describe the course of ANAMMOX reaction.  相似文献   

14.
厌氧氨氧化微生物颗粒化及其脱氮性能的研究   总被引:22,自引:4,他引:18  
利用厌氧颗粒污泥作为种泥,启动SBR反应器,旨在培养厌氧氨氧化颗粒污泥以及研究其脱氮性能.结果表明,水力停留时间(HRT)是富集厌氧氨氧化微生物的1个重要控制因素,以HRT为30 d,第58 d时,SBR反应器就出现厌氧氨氧化现象,与此同时,颗粒污泥由灰黑色变为棕褐色,粒径减小.到第90 d时,成功培养出厌氧氨氧化颗粒污泥,NH+4-N和NO-2-N同时被去除,最大去除速率分别达到14.6 g/(m3·d)和6.67 g/(m3·d).从第110 d开始,逐步降低HRT,以提高基质负荷促进厌氧氨氧化菌生长.到目前t=156 d,HRT降到5 d,氨氮和亚硝酸氮的去除率分别达到60.6%和62.5%,亚硝酸氮/氨氮的比率为1.12.污泥也由棕褐色变为红棕色,形成红棕色的具有高厌氧氨氧化活性颗粒污泥,总氮负荷达到34.3 g/(m3·d).  相似文献   

15.
几种生物脱氮新工艺的比较   总被引:2,自引:0,他引:2  
目前已经发现了2种微生物脱氮新途径:一是根据好氧氨氧化菌具有反硝化能力,从而在一定条件下反硝化脱氮;二是在功能微生物的作用下,亚硝酸盐与氨离子一起厌氧氨氧化,并且发现了厌氧氨氧化菌与好氧氨氧化菌或甲烷菌能协同耦合在一种有利的微生态环境中.基于以上新途径提出了几种生物脱氮新工艺,包括了:SHARON、ANAMMOX、SHARON-ANAMMOX、CANON、OLAND、NOX工艺、需氧反氨化工艺(Aerobic deammonification)、甲烷化与厌氧氨氧化耦合工艺.  相似文献   

16.
有效去除垃圾渗滤液中的氮是一项艰巨的任务,传统的先硝化后反硝化处理方法存在的主要问题是反硝化阶段碳源不足和总氮去除效率过低。研究中研究人员提出了好氧反硝化、厌氧氨氧化和短程硝化反硝化等新方法。好氧反硝化菌可以利用硝化过程中充足的碳源进行反硝化;厌氧氨氧化是在缺氧条件下,以NO-2为电子受体,直接把氨氧化成N2;短程硝化反硝化将脱氮过程控制在亚硝化阶段,不但节省了反硝化过程中的碳源,而且减少了能量的消耗。本文对这些方法及其在实践的应用进行了论述。  相似文献   

17.
钟红春  周少奇  胡永春 《环境科学》2007,28(11):2473-2477
通过温度和进水控制对UASB-ANAMMOX反应器内的ANAMMOX菌的反应活性进行充分抑制后,采用垃圾渗滤液配水来进行二次启动.结果表明,二次启动的时间相对较快,在第21 d的 NH4-N的去除率就可以达到96 .17%,NO--N的去除率达到86 .77%;由于反硝化的协同作用降低使得COD的去除率有下降的趋势,平均去除量只有60 mg/L; 反应启动过程中的平均三氮比即去除的NH4-N∶去除的NO--N∶生成的NO--N=1∶0 .75∶0 .26; 反应成功进行二次启动后的平均三氮比即去除的NH4-N∶去除的NO--N∶生成的NO--N=1∶0 .95∶0 .26,三氮比中的亚硝氮去除比率较大幅度上升.  相似文献   

18.
蚀刻液废水厌氧氨氧化脱氮性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李祥  黄勇  朱莉  袁怡  李大鹏  张丽 《中国环境科学》2012,32(12):2199-2204
采用上流式生物膜反应器接种厌氧氨氧化污泥,研究了印制电路板行业蚀刻液废水厌氧氨氧化脱氮可行性.结果表明,蚀刻液废水作为NH4+-N源时,其所携带的物质对厌氧氨氧化污泥活性具有毒性作用.当蚀刻液废水稀释到NH4+-N浓度150mg/L进入反应器14d后,厌氧氨氧化氮去除速率从3.2kg/(m3·d)下降到1.2kg/(m3·d).但是通过驯化培养可以很好地缓解蚀刻液对厌氧氨氧化污泥的毒性影响.经过110d的驯化,蚀刻液废水稀释到NH4+-N浓度300mg/L进入反应器后并未出现明显的抑制现象.厌氧氨氧化氮去除速率从1.6kg/(m3·d)上升到6.0kg/(m3·d).说明通过驯化培养后,厌氧氨氧化工艺能够很好的运用到PCB行业高NH4+-N废水的处理.  相似文献   

19.
单级序批式生物膜反应器(SBBR)多途径生物脱氮研究   总被引:2,自引:0,他引:2  
徐峥勇  杨朝晖  曾光明  王荣娟  肖勇  许朕 《环境科学》2007,28(10):2326-2331
利用传统微生物分析技术与PCR、变性梯度凝胶电泳(DGGE)等分子生物学技术相结合的方法,对单级SBBR反应器中的主要生物脱氮途径进行分析.结果表明,亚硝化-厌氧氨氧化-反硝化途径是主要的脱氮途径,通过该途径去除的NH+4-N占总去除量的65%以上;另外2条途径则分别是亚硝化-反硝化途径以及全程硝化-反硝化途径.所有途径都采取同步和分步2种方式完成,同步方式以曝气阶段的氮素亏损形式予以表现.分步方式则依靠各种脱氮微生物在曝气阶段和厌氧阶段不同的活性程度完成,亚硝酸细菌是曝气阶段的主要活性菌种,完成NH+4-N向NO-2-N的转化,而厌氧氨氧化细菌和反硝化细菌则在厌氧阶段成为优势菌种,完成完整的生物脱氮过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号