首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
典型污灌区土壤中多环芳烃的垂直分布特征   总被引:21,自引:0,他引:21       下载免费PDF全文
研究了有污水灌溉历史的沈抚灌区、浑浦灌区和清原对照点3个土壤剖面多环芳烃(PAHs)含量的分布特征.结果表明,在美国EPA优先控制的16种PAHs中,沈抚灌区土壤剖面中检测出10种,浑浦灌区检出12种,清原检出8种.PAHs总含量峰值随着土壤深度的增加呈下降趋势,但最高值均未出现在0~2 cm土层,而是分布在2~5和5~10 cm土层.各剖面单组分分布以4~5环PAHs为主,主要污染物是荧蒽、苯并[a]蒽和苯并[k]荧蒽,低环PAHs含量峰值多集中在0~2 cm土层,中、高环PAHs大部分分布在5~10 cm土层.从单组分比值和母体多环芳烃比值可以看出,3个剖面的PAHs污染源来自于汽油、原油、煤的不完全燃烧,或通过污水灌溉,或以烟尘颗粒为载体通过大气干、湿沉降和风力输送进入到土壤环境中.   相似文献   

2.
兰州市西固区土壤中PAHs污染特征及来源解析   总被引:2,自引:0,他引:2  
为了解石油工业区土壤中PAHs(多环芳烃)的污染特征、来源及潜在危害,选择兰州市西固区为研究区域,系统采集表层土壤样品及部分剖面样品,采用GC-MS检测方法,分析了土壤中PAHs的污染水平与分布、来源及潜在致癌风险. 结果表明:研究区表层(0~20 cm)土壤中w(∑PAHs)(22种PAHs的总质量分数)在535~32 300 μg/kg之间;PAHs在土壤剖面的纵向分布上主要集中在5~10 cm,在0~25 cm范围内变化不明显;表层土壤中PAHs主要以2~3环为主. 相关性分析显示,土壤中w(∑PAHs)与w(TOC)无显著的相关性,表明TOC并非影响土壤中PAHs持留的重要因素. 研究区土壤中PAHs主要来源于石油、生物质和煤炭的燃烧,∑TEQBaP (22种PAHs的毒性当量浓度,以苯并芘等效浓度计)平均值为190 μg/kg,表明土壤中PAHs的潜在致癌性较低.   相似文献   

3.
有机碳含量对土壤剖面中多环芳烃纵向迁移的影响   总被引:3,自引:0,他引:3  
为探索有机碳含量对土壤剖面中多环芳烃(PAHs)纵向迁移的影响,选取北京地区3条有机碳(TOC)含量明显不同的土壤剖面进行了土柱淋滤实验研究.结果表明,通过30 d(相当于北京地区3年的淋滤水量)的淋滤实验后,不同剖面中PAHs均存在不同程度的迁移现象,但剖面中残留的PAHs仍然主要富集在土柱表层0~30 cm土壤中,且中高环数PAHs的残留率明显高于低环数PAHs.TOC含量与PAHs的残留总量之间具有显著的正相关性,TOC含量越高,PAHs残留量越高.此外,TOC对不同环数PAHs迁移的影响程度存在差别,高环数PAHs受TOC变化的影响高于低环数PAHs.  相似文献   

4.
天津地区土壤多环芳烃在剖面中的纵向分布特征   总被引:41,自引:3,他引:38  
在天津市北部山区、中部农田和东南部油田采油作业区分别采集了土壤样品 ,研究了土壤中多环芳烃 (PAHs)的纵向分布特征 ,并对土壤中多环芳烃的来源进行了分析 .结果表明 ,PAHs含量峰值一般位于土壤表层或次表层 ,并随着土壤剖面的加深而减少 .农田菜地土壤PAHs在 4 0cm深处含量仍然较高 ,而油田仅表层 3cm富集PAHs ,这与耕作土壤表层常受到人为扰动有关 .与高环物质相比 ,低环物质更容易向下迁移 .土壤中有机碳的含量、土壤的性质以及土壤的粒度均是影响PAHs迁移的重要因素 .山区和菜地土壤中PAHs主要来自燃烧源 ,而油田则显示为石油源和燃烧源的混合源 .  相似文献   

5.
天津地区土壤有机碳和粘粒对PAHs纵向分布的影响   总被引:15,自引:3,他引:12  
研究了天津地区土壤中有机碳(TOC)和粘粒含量对多环芳烃(PAHs)纵向分布的影响,利用相对富集系数分析了PAHs在不同土壤深度的富集趋势.结果表明,土壤剖面中PAHs含量峰值一般在土壤的表层和次表层,并随着土壤剖面的加深而减少.土壤中有机碳含量、土壤粒度、PAHs性质和扰动、淋溶等均是影响PAHs纵向迁移的重要因素.PAHs相对富集在有机碳和粘粒含量较高的土壤中.高环PAHs主要是以与土壤有机质胶体结合的形式发生迁移,不易迁移到土壤剖面的深部,而低环PAHs则主要是以溶解态形式发生迁移,相对较易发生迁移.   相似文献   

6.
通过测定和计算兴凯湖地区沼泽湿地及由其垦殖而来的旱田和水田土壤剖面有机碳含量和密度及土壤剖面不同深度土壤溶液中可溶性有机碳含量,分析了垦殖对兴凯湖周边沼泽湿地土壤有机碳垂直分布及土壤剖面截留可溶性有机碳的影响.结果表明,垦殖显著影响湿地0~40 cm土壤有机碳含量,大豆田和水稻田0~10、10~20、20~30、30~40 cm土壤有机碳含量与湿地相比分别降低了79.07%和82.01%、79.01%和82.28%、79.86%和92.90%、37.49%和78.05%;40 cm以下土层土壤有机碳含量垦殖前后差异不显著.大豆田和水稻田有机碳密度相比沼泽湿地分别降低了25.50%和47.35%,但三者1 m深土壤中大部分的有机碳均是储存在0~50 cm土层中.垦殖前后土壤有机碳含量与深度之间的关系均可用指数函数来描述,垦殖改变了土壤有机碳含量但并未改变其随土壤深度的变化规律.垦殖为大豆田土壤剖面对可溶性有机碳的截留效果较湿地和水稻田更明显,沼泽湿地和水稻田对可溶性有机碳的截留效果大致相当.  相似文献   

7.
为准确了解银川市农田土壤中多环芳烃的污染状况、空间分布特征及其生态风险,文章采集银川市农田表层土壤样品共91个,采用高效液相色谱法检测了样品中16种多环芳烃(PAHs)含量,分析其污染特征及空间分布状况,对PAHs来源进行分析,并对土壤中PAHs潜在的生态风险和健康风险进行了评价。结果表明:土壤中∑PAHs含量在ND~1 517.37μg/kg之间,平均值为241.49μg/kg,16种PAHs单体变异系数均大于1,区域分异显著;未污染、轻度污染、中度污染和重度污染的样品分别占到样品总数的60.44%、32.97%、2.19%和4.40%;16种PAHs单体的空间分布差异较大,东南部和西南部含量较高;源解析结果显示银川市农田土壤中PAHs的主要来源为煤、化石燃料等的高温燃烧以及汽车尾气排放和汽油源;生态风险评价结果显示,PAHs毒性当量范围为0~1.1×103μg/kg,平均值为52.04μg/kg,整体潜在生态风险较低,但部分样品具有较高的生态风险;健康风险评价结果显示,非致癌风险均在可接受的标准范围,但是有7个样品的BaP致癌风险超过美国环境保护局推荐的致癌水...  相似文献   

8.
不同土地利用类型的土壤中多环芳烃的纵向迁移特征   总被引:6,自引:5,他引:1  
为研究城镇化过程中不同土地利用类型土壤中多环芳烃(PAHs)的纵向迁移特征,在快速进行城镇化建设的沈阳东部地区选择了3种不同土地利用类型(城市用地、耕地及林地)的5个土壤剖面(0~1 m),分析了土壤剖面层中PAHs的残留特征,讨论了影响PAHs纵向分布和迁移的因素以及土壤PAHs的来源.结果表明,5个采样点土壤表层ΣPAHs的含量为:城市1号点513. 19~12 689. 04μg·kg~(-1)、旱田点36. 18~7 196. 10μg·kg~(-1)、水田点70. 92~747. 53μg·kg~(-1)、城市2号点19. 39~636. 47μg·kg~(-1)和林地点4. 79~349. 24μg·kg~(-1). PAHs在城市用地和林地中主要被截留在0~30 cm浅层土壤中,在耕地可以迁移至较深的土壤层;高环数PAHs在浅层土壤层中所占比例较大,深层土壤低环数占比较高;土壤有机质与PAHs分布呈显著正相关,PAHs的理化属性对其迁移能力有一定影响;源解析表明,研究区域的PAHs主要来源于工业活动和交通等燃烧,部分低环数PAHs来自于石油产品输入.  相似文献   

9.
污灌区土壤中多环芳烃的垂直分布及可能来源   总被引:7,自引:5,他引:2  
用气相色谱-质谱联用(GC/MS)的方法分析太原市小店污灌区9个土壤剖面中16种多环芳烃(PAHs)含量及垂直分布特征.结果表明,小店污灌区表层土(0~10 cm)中PAHs平均含量变化趋势为背景区<沼泽区<清灌区<污灌区;大部分剖面土中PAHs含量随土层深度增加呈减少趋势,PAHs含量变化幅度较大的位置集中在地表以下0~40 cm范围内;高环(4~6环)PAHs大量富集在距地表0~50 cm土壤内,清灌区土壤对4~6环PAHs的富集能力强于污灌区;不同环数PAHs与TOC和砂粒呈正相关关系(rmax=0.791,P=0;rmax=0.882,P=0),与pH呈负相关关系(rmin=-0.1,P=0.702);距地表0~40cm范围内的土壤中PAHs的主要污染来源为小店区煤的燃烧;燃烧产生PAHs的污染途径一是直接沉降至土壤中,二是沉降至水体中,吸附在固体颗粒表面,随着灌溉污水流动而在土壤中大量富集.  相似文献   

10.
通过分析5种不同有机碳水平侵蚀坡面上土壤微生物量碳的空间分布特征及其影响因素,探究了不同土壤有机碳水平下侵蚀和土壤微生物量碳的"压力-响应"关系.结果表明:10~20 cm土层土壤微生物量碳含量随土壤有机碳水平的增加而增加.0~10 cm土层土壤微生物量碳含量比10~20 cm土层更易受坡面有机碳背景的影响,且对侵蚀的响应较敏感;2土壤微生物碳含量随着土层深度的加深而减少,当坡面有机碳水平为5.68 g·kg-1时,土壤微生物量碳的剖面分布差异最大.土壤微生物量碳的水平分布表现为沉积区对照区侵蚀区,当坡面有机碳含量在4.92~5.65 g·kg-1范围内,其水平分布差异较大.即在中等有机碳水平的侵蚀坡面上,土壤微生物量碳的空间分布差异较大,对侵蚀的响应较敏感;3土壤微生物量碳的空间分布主要受坡面土壤有机碳水平的影响;其次受坡位、土壤平均含水量、土壤容重等的影响.  相似文献   

11.
过硫酸钠是污染土壤化学氧化修复技术中应用较为广泛的氧化剂.为研究过硫酸钠对不同土壤中PAHs(polycyclic aromatic hydrocarbons,多环芳烃)的修复效果,以我国多种典型土壤(黑土、潮土、黄土、紫色土、褐土、砖红壤)为试验样本,以萘、菲、蒽、芘、苯并[a]芘5种PAHs为目标污染物,分析活化过硫酸钠对人为老化的降解率;此外,通过对氧化前后土壤pH、w(有机碳)等土壤性质变化的比较和分析,探讨氧化修复过程对土壤性质的影响.结果表明:当活化过硫酸钠用量为0.8 mmol/g、温度为25℃时,PAHs污染土壤中萘、菲、蒽、芘、苯并[a]芘的降解率最高,分别为87.82%、79.68%、87.93%、83.40%、94.31%.随着温度的升高,PAHs降解率逐渐升高,当温度达到25℃时,PAHs的降解率(85.69%)达到最高,随后随着温度的继续升高,总PAHs的降解率没有明显增加;随着pH的升高,PAHs的降解率逐渐升高,当pH达到6~7时,PAHs降解率维持在一个较高水平;随后随着pH的继续升高,总PAHs的降解率逐渐降低.随着温度以及pH的变化,5种PAHs的降解率与总PAHs的降解率变化趋势一致. w(有机碳)越低,PAHs环数越高,PAHs降解率越高;高环(5~6环)、中环(4环)、低环(2~3环)PAHs降解率与总PAHs降解率变化趋势一致.此外,过硫酸钠氧化修复后土壤结构遭到一定程度的破坏,土壤的pH、w(有机碳)和土壤肥力会有不同程度的下降,对土壤的再次利用有较大影响.研究显示,过硫酸钠可有效氧化降解不同性质土壤中PAHs,在氧化修复PAHs污染土壤方面具有较好的应用前景.   相似文献   

12.
The contents and distribution of 20 polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic hydrocarbons (HAHs) were investigated in 16 soil profiles of Beijing and Tianjin region. Transport of high molecular weight PAHs (HMWPAHs) and the correlation between total organic carbon (TOC) and their concentrations were also discussed. The results indicated that highly contaminated sites were located at urban or wastewater irrigation areas and pollutants mainly accumulated in topsoil (< 40 cm), with a sharp content decrease at the vertical boundary of 30–40 cm. Total PAHs/HAHs concentrations in soils from Tianjin were markedly greater than those from Beijing. Even the contents at bottoms of soil profiles in Tianjin were higher than those in topsoils of Beijing soil profile. HMWPAHs dominated the PAH profiles, exhibiting a uniform distribution of pyrogenic origin between topsoils and deep layers. Furthermore, the percentages of HMWPAHs remained relative constant with the depth of soil profiles, which were consistent with the distribution of particulate matter-associated PAHs in the local atmospheric environments. Therefore, HMWPAHs transport with particulates might be the predominant source found in soil profiles.  相似文献   

13.
淋滤水量对多环芳烃在土壤剖面中纵向迁移的影响研究   总被引:1,自引:0,他引:1  
为了揭示淋滤作用对多环芳烃(PAHs)在土壤剖面中纵向迁移的影响,选取北京市昌平区一条具有代表性的土壤剖面作为实验样品,进行了PAHs土柱淋滤模拟研究。结果表明:经过淋滤作用后,淋滤水量不同的三个土柱(A1,A2,A3,淋滤水量依次增大)表层土中残留PAHs总量逐渐降低,但不同环数PAHs含量降低幅度存在较大的差别,低环数PAHs受影响程度更大;在淋滤水量相同的情况下,不同环数PAHs的含量均存在随土柱深度的增大而逐渐降低的趋势,但降低程度存在一定差别。由此推测,通过长期淋滤作用,表层土中的PAHs可以向深层土壤迁移,这些认识可以为深层土壤及浅层地下水的多环芳烃污染评价及保护提供合理的理论依据。  相似文献   

14.
采用过硫酸盐氧化法测定了北京市某焦化厂表层土壤中16种PAHs的生物有效性,并分析了过硫酸盐氧化前、后SOM(土壤有机质)的质量分数及其结构组成,以研究过硫酸盐氧化法预测焦化厂土壤中PAHs生物有效性方面的可行性. 结果表明:①7个供试土壤样品中w(∑PAHs)(16种PAHs质量分数之和)为10.80~249.00 mg/kg,并以HPAHs(高分子量PAHs)为主,不同环数PAHs的质量分数与w(SOM)均呈正相关,二者关系符合对数方程(R2为0.653~0.798). ②依据过硫酸盐氧化前、后土壤中w(PAHs)的变化得到PAHs的生物有效性,其中,2~3环PAHs的生物有效性平均值为0.46,略高于4环PAHs(0.22)和5~6环PAHs(0.28),较高w(SOM)及HPAHs均易引起焦化厂土壤中PAHs生物有效性的下降. ③过硫酸盐氧化前不同环数PAHs的质量分数与氧化后PAHs的残留量呈显著正相关(R2为0.991~0.994),故可利用过硫酸盐氧化前的w(PAHs)预测土壤中PAHs的生物有效性. ④与过硫酸盐氧化前相比,氧化后土壤中w(SOM)平均下降23.0%,FTIR(傅里叶变换红外光谱)分析结果显示,1 448 cm-1处吸收峰表征的脂肪碳可能是被氧化去除的软质碳的主要组分,氧化后SOM中的芳香碳相对吸光度增幅为0.88%~11.62%,可引起SOM的缩合程度加剧、憎水性增强. 因此,过硫酸盐氧化法能够作为测定焦化厂土壤中PAHs生物有效性的快速方法,可利用过硫酸盐氧化前的w(PAHs)预测土壤中PAHs的生物有效性.   相似文献   

15.
吴彦瑜  胡小英  洪鸿加  彭晓春 《环境科学》2013,34(10):4031-4035
研究分析了废旧汽车拆解区土壤剖面的美国EPA优控的16种多环芳烃的纵向分布.结果表明,表层土壤中16种多环芳烃总含量达到了17 323 ng·g-1,其中芘(Pyr)、苯并[a]蒽(BaA)、芴(Flu)含量最高,分别达到11 820、1 234和1 083 ng·g-1.汽车拆解区表面和土壤深度为10 cm的土壤均达到了重度污染级别;深度在50~350 cm之间的土壤为轻度至中度污染,当土壤深度超过400 cm,土壤基本未受到污染.但是,7种致癌性PAHs(Chr、BaA、BbF、BkF、BaP、DahA、IcdP)总量在土壤深度达到850 cm时仍有34.15 ng·g-1.随着土壤深度的增大,多环芳烃含量急剧降低,当土壤深度超过300 cm,三环的菲(Phe)、荧蒽(Fl)和二氢苊(Ace)成为优势组分.土壤剖面菲(Phe)/蒽(Ant)比值和荧蒽(Fla)/芘(Pyr)、Fluo/Pyr、BaA/(BaA+Chr)等参数表明,土壤表面的多环芳烃主要来源于石油污染.  相似文献   

16.
为评价丹江口水库迁建区土壤中PAHs的污染水平及该区域被淹没后的生态风险,采用GC/MS(气相色谱-质谱联用仪)分析技术,检测了该区域表层(0~20 cm)土壤中的w(PAHs),并探讨不同土地利用方式下PAHs的分布特征及来源. 结果表明:①研究区域表层土壤中w(PAHs)为4.04~181 ng/g,平均值为41.3 ng/g,在不同土地利用方式下表现为居住地>玉米地>菜地>其他耕地>养殖地>林地>果园. ②特征化合物指数法分析结果显示,菜地、居住地和其他耕地表层土壤中PAHs主要来自柴油燃烧,少部分属既有燃料燃烧又有石油污染的混合源,养殖地和玉米地表层土壤中PAHs主要来自燃料燃烧,说明土地利用方式对表层土壤中PAHs的质量分数、组成及其来源等均产生一定影响. ③与国内其他地区湖泊和水库沉积物相比,研究区域表层土壤中w(PAHs)较低,属于清洁无污染等级. 迁建区表层土壤被淹没成为沉积物后,由于PAHs污染程度较小,因此潜在生态风险较低.   相似文献   

17.
2002-10~2005-11采集珠江三角洲典型区域(东莞市、惠州市、中山市、珠海市和佛山市顺德区)的农业土壤表层样品260个,运用气相色谱-质谱方法对美国EPA优控的16种多环芳烃(PAHs)进行分析测定.结果显示,研究区农业土壤中16种PAHs含量范围在3.3~4 079.0 ng·g-1,平均含量244.2 ng·g-1,以3环和4环的PAHs为主;中心城区土壤中PAHs含量高于远郊区,菜地>水稻田>香蕉地>旱坡地果园地>甘蔗地.依据荧蒽/芘及2+3环与4环以上PAHs化合物分布特点,表明该区域农业土壤中PAHs主要来源于化石燃料的不完全燃烧.通过与国内外土壤中PAHs含量的对比,研究区的农业土壤受到一定程度的PAHs污染,含量处于中等水平.  相似文献   

18.
上海北部郊区土壤多环芳烃含量及来源分析   总被引:18,自引:4,他引:14  
为研究上海北部郊区农田土壤的多环芳烃(PAHs)含量特征,野外采集表层土壤样品,通过室内分析方法测定了土壤中16种PAHs的含量.结果表明,在研究区土壤中16种优控PAHs总含量(w(PAH16))为203.8~6 753.9 ng/g, 平均值为1 172.7 ng/g. 相对于荷兰的土壤修复目标值而言,上海北部郊区部分地块农田表层土壤PAHs含量偏高.说明研究区农田土壤已经受到了一定程度的PAHs污染.根据不同环数PAHs的相对丰度法和PAHs组分的浓度比值法判断,上海北部郊区表层土壤中的PAHs主要来源于石油和煤等化石燃料的高温燃烧及汽车尾气排放等燃烧源.   相似文献   

19.
多环芳烃(PAHs)在环境中的污染越来越受到重视。文章采集海口湾7个代表性点位表层水样,分析其中16种多环芳烃(PAHs)的含量,探讨其可能的来源。结果表明:海口湾表层水体中总PAHs平均值为33.6 ng/L,变化范围为12.3~108 ng/L,PAHs的组成以2~4环为主。分析荧蒽/芘的比值表明,海口湾水体中的多环芳烃主要来源于石油污染。  相似文献   

20.
黄淮平原农田土壤中多环芳烃的分布、风险及来源   总被引:9,自引:0,他引:9       下载免费PDF全文
对227个黄淮平原农田表层土壤样品中16种多环芳烃(PAHs)含量进行了调查,并对其致癌风险和来源等进行了分析.结果表明,有15种PAHs被普遍检出,各单体检出率在23.3%~100%之间(苊烯未检出).土壤中PAHs总量(∑PAHs15)为33.44~1246μg/kg,平均值为152.4±166.2μg/kg,且以4环及4环以上PAHs为主,其中16.7%的样品中PAHs含量达到了污染水平(>200μg/kg),与国内外其他地区相比,黄淮平原农田土壤中PAHs含量处于相对较低水平.黄淮平原农田土壤7种致癌性PAHs毒性当量浓度(TEQBap)占总毒性当量浓度的98.27%,其中苯并(a)芘(Bap)潜在致癌风险最大.同分异构体比值法和主成分分析结果表明黄淮平原农田土壤中PAHs的主要来源是汽油、柴油高温燃烧、以及煤和秸秆燃烧.相关性分析表明有机质含量与∑PAHs15及PAHs单体含量具有显著相关性,表明有机质是影响PAHs在土壤中含量、空间分布及归趋的一个重要因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号