首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Soil samples from Huizhou and Zhanjiang, China were analyzed for 16 priority polycyclic aromatic hydrocarbons (PAHs) with harmonized sampling, sample extraction and analysis quantification methods. The concentrations and sources of PAHs in soil samples of the two cities were compared. Almost all of the PAH components were detectable in 103 soil samples. The concentrations of ΣPAHs ranged from 35.40 to 534.5 g/kg in soil samples from Huizhou, and ranged from 9.50 to 6618.00 g/kg in samples from Zhanjiang. Evident differences of concentrations, compositions and sources of PAHs in soils were observed between the two cities. The average concentrations of individual component and the sum of a group of PAHs in soil samples from Zhanjiang were significantly higher than those in Huizhou (P < 0.05). Phe, Flu, Pyr, Bbf and Baa were the dominant PAH components both in soil samples from Huizhou and Zhanjiang. Except for these five components, Bap, I1p, Daa and Bgp were also the dominant PAH components in soil samples from Zhanjiang. Coal combustion and liquid fossil fuel combustion were the same sources of PAHs in the two cities with different contributions, and petroleum played a key role in PAHs release in Zhanjiang.  相似文献   

2.
We selected the Guanting Reservoir in Beijing, China as a case where an industrial area locates on the upwind corner to study the influence of human activities and natural processes on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Soil PAH concentrations in the study area follow a log-normal probability distribution function, suggesting that distribution of PAH in soils was affected by human activities. Distribution of PAHs in soils was significantly affected by the point source that high PAH concentrations were observed in near industrial area with an obvious declining trend from the northwest to the southeast which was the prevailing wind direction in this area. Away from the influence of point source, distribution of PAHs in soils was found to significantly correlate with total organic carbon content, while the influences of agricultural land uses and type of soil texture on the total soil PAHs contents and ring compositions were quite limited. The results can provide some evidences and data on the pollutant accumulation in drink water protection area influenced by natural processes and human activities.  相似文献   

3.
The concentrations of 16 priority polycyclic aromatic hydrocarbons(PAHs) were measured in 23 farmland soil samples and 10 riverine sediment samples from Guiyu, China, and the carcinogenic risks associated with PAHs in the samples were evaluated. Guiyu is the largest electronic waste(EW) dismantling area globally, and has been well known for the primitive and crude manner in which EWs are disposed, such as by open burning and roasting. The total PAH concentrations were 56–567 ng/g in the soils and 181–3034 ng/g in the sediments.The Shanglian and Huamei districts were found to be more contaminated with PAHs than the north of Guiyu. The soils were relatively weakly contaminated but the sediments were more contaminated, and sediments in some river sections might cause carcinogenic risks to the groundwater system. The PAHs in the soils were derived from combustion sources,but the PAHs in the sediments were derived from both combustion and petroleum sources.  相似文献   

4.
Phytoremediation has long been recognized as a cost-effective method for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil. A study was conducted to investigate the uptake and accumulation of PAHs in root and shoot of Lolium perenne L. Pot experiments were conducted with series of concentrations of 3.31-378.37 mg/kg for phenanthrene and those of 4.22-365.38 mg/kg for pyrene in a greenhouse. The results showed that both ryegrass roots and shoots did take up PAHs from spiked soils, and generally increased with increasing concentrations of PAH in soil. Bioconcentration factors(BCFs) of phenanthrene by shoots and roots were 0.24- 4.25 and 0.17-2.12 for the same treatment. BCFs of pyrene by shoots were 0.20-1.5, except for 4.06 in 4.32 mg/kg treatment, much lower than BCFs of pyrene by roots (0.58-2.28). BCFs of phenanthrene and pyrene tended to decrease with increasing concentrations of phenanthrene and pyrene in soil. Direct uptake and accumulation of these compounds by Lolium perenne L. was very low compared with the other loss pathways, which meant that plant-promoted microbial biodegradation might be the main contribution to plant-enhanced removal of phenanthrene and pyrene in soil. However, the presence of Lolium perenne L. significantly enhanced the removal of phenanthrene and pyrene in spiked soil. At the end of 60 d experiment, the extractable concentrations of phenanthrene and pyrene were lower in planted soil than in non-planted soil, about 83.24%-91.98% of phenanthrene and 68.53%-84.10% of pyrene were removed from soils, respectively. The results indicated that the removal of PAHs in contaminated soils was a feasible approach by using Lolium perenne L.  相似文献   

5.
Soil is an important environmental medium that is closely associated with humans and their health. Despite this, very few studies have measured toxicants in soils, and associated them with health risks in humans. An assessment of health effects from exposure to contaminants in soils surrounding industrial areas of chemical production and storage is important. This article aims at determining pollution characteristics of persistent toxic substances (PTS) in an industrial area in China to unravel the relationship between soil pollution by PTS and human health. One hundred and five soil samples were collected and 742 questionnaires were handed out to residents living in and around an industrial area around Bohai Bay, Tianjin in Northern China. Concentrations of organochlorine pesticides and polycyclic aromatic hydrocarbons (PAHs) were determined in soil. Mann-Whitney U and binary multivariate nonconditional logistic regression models were employed to analyze the relationship between health indicators of local residents and contaminant levels. Odds ratio (OR) and a 95% confidence interval (CI) for health incidences were also calculated. The average concentrations of DDT (73.9 ng/g), HCH (654 ng/g) and PAHs (1225 ng/g) were relatively high in the industrial area. Residents living in the chemical industry parks were exposed to a higher levels of PTS than those living outside the chemical industry parks. This exposure was associated with a higher risk of breast cancer (OR 1.87, 95% CI 0.12–30.06), stomach cancer (OR 1.87, 95% CI 0.26– 13.41), dermatitis (OR 1.72, 95% CI 1.05–2.80), gastroenteritis (OR 1.59, 95% CI 0.94–2.68), and pneumonia (OR 1.05, 95% CI 0.58–1.89).  相似文献   

6.
Atmospheric particulate and polycyclic aromatic hydrocarbons (PAHs) size distribution were measured at Jhu-Shan (a rural site) and Sin-Gang (a town site) in central Taiwan during the rice straw burning and non-burning periods. The concentrations of total PAHs accounting for a roughly 58% (34%) increment in the concentrations of total PAHs due to rice-straw burning. Combustion-related PAHs during burning periods were 1.54–2.57 times higher than those during non-burning periods. The mass median diameter (MMD) of 0.88–1.21 m in the particulate phase suggested that rice-straw burning generated the increase in coarse particle number. Chemical mass balance (CMB) receptor model analyses showed that the primary pollution sources at the two sites were similar. However, ricestraw burning emission was specifically identified as a significant source of PAH during burning periods at the two sites. Open burning of rice straws was estimated to contribute approximately 6.3%–24.6% to total atmospheric PAHs at the two sites.  相似文献   

7.
PM10 airborne particles and soot deposit collected after a fire incident at a chemical store were analyzed in order to determine the concentrations of polycyclic aromatic hydrocarbons(PAHs). The samples were extracted with 1 : 1 hexane-dichloromethane by ultrasonic agitation. The extracts were then subjected to gas chromatography-mass spectrometric(GC-MS) analysis. The total PAHs concentrations in airborne particles and soot deposit were found to be 3.27 1.55 ng/m^3 and 12.81 24.37 μg/g, respectively. Based on the molecular distributions of PAHs and the interpretation of their diagnostic ratios such as PHEN/(PHEN ANTH), FLT/(FLT PYR) and BeP/(BeP BaP), PAHs in both airborne particles and soot deposit may be inferred to be from the same source. The difference in the value of IP/(IP BgP) for these samples indicated that benzo[ g, h, i] perylene and coronene tend to be attached to finer particles and reside in the air for longer periods. Comparison between the molecular distributions of PAHs and their diagnostic ratios observed in the current study with those reported for urban atmospheric and roadside soil particles revealed that they are of different sources.  相似文献   

8.
Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons(PAHs)from contaminated sandy soil for a remediation purpose,with some of the oil remaining in the soil.Although most of the PAHs were removed,the risk of residue oil in the soil was not known.The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation.Addition of sunflower oil and column ex...  相似文献   

9.
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediment samples from nine sites located at the Iguac?u River Basin in the Metropolitan Region of Curitiba, Brazil to evaluate their distribution and sources. The total concentration of the PAHs was greater for sediments from highly urbanized areas, while the sediments from the Ira′? Environmental Protection Area (Ira′? EPA) showed significantly low concentrations. The sediments from the Iguac?u and Barigui rivers were classified as highly contaminated, while those from the Cercado and Curralinho rivers were classified as moderately contaminated. The predominance of PAHs containing two to four aromatic rings in most of the samples suggested the direct input of raw sewage into the water resources evaluated. Benzo[g,h,i]perylene, dibenzo[a,h]anthracene and indeno[1,2,3-cd]pyrene were predominant in sediments from the areas under the greatest urban and industrial development. The correlation between thermodynamic stability and the kinetics of evolution presented by the isomeric pairs indicated that combustion is the predominant source of PAHs in the sediments because the combustion of fossil fuels affected most of the points evaluated, followed by combustion of biomass and eventually combustion of oil product inputs. In general, the results showed that areas under strong urban influence, as well as the Ira′? EPA, receive contributions of PAHs from similar sources.  相似文献   

10.
The levels and distribution of mercury (Hg) species, including total mercury (THg) and methylmercury (MeHg) in the topsoil and dust collected from twenty sampling stations located in di erent land function areas of Xiamen, China, were investigated. The THg concentrations in topsoil ranged from 0.071 to 1.2 mg/kg, and in dust ranged from of 0.034 to 1.4 mg/kg. For stations where the THg of dust was less than 0.31 mg/kg, THg concentrations in the topsoil were significantly correlated to those in the corresponding dust (r = 0.597, n = 16, P = 0.014). The MeHg concentrations in topsoil were varied between 0.14 and 5.7 g/kg. The ratios of MeHg/THg in the topsoil ranged from 0.069% to 0.74%. The range of MeHg concentration in the dust were 0.092–2.3 g/kg. The ratios of MeHg/THg in the dust were at the same level as those in the topsoil. The MeHg concentrations in both topsoil and dust were linked to corresponding THg concentrations and soil organic matter. Neither THg nor MeHg concentration in the topsoil and dust was obviously linked to the land function.  相似文献   

11.
多环芳烃在土壤剖面中迁移行为的土柱淋滤模拟研究   总被引:11,自引:1,他引:10  
京津地区典型土壤剖面分析表明,土壤中PAHs含量和组成均随深度增大而呈现明显的变化.为了揭示PAHs在土壤剖面中的迁移特征与控制因素,开展了室内土柱模拟实验,考察了PAHs的迁移特点及影响因素,特别是土壤有机质含量的影响.采用3种土壤质地和TOC不同的土样装填土柱,以去离子水作为淋滤液对预先加入土柱表层的污染物(包括不同环数PAHs、d-Flu)进行淋滤,当达到淋滤量后分析土柱中PAHs含量及组成.结果表明,不同实验条件下,淋滤后土壤剖面不同层次土壤中PAHs含量均高于原土样中的,且PAHs主要富集在土柱表层,随深度增加其含量明显降低,但不同土柱中降幅不同;不同环数PAHs分布特征存在差异.与原土柱相比,除d-Flu和Flu等低环数芳烃的含量在剖面不同深度均有明显增大外,部分高环数PAHs相对含量在土柱的不同深度也明显增加,说明高环数PAHs也具有一定的迁移能力,但相对于3环PAHs,高环数PAHs在土壤中迁移能力较低.此外,土壤剖面PAHs的富集程度明显受土壤中TOC影响,PAHs总量或单体PAH含量在土柱中迁移的深度随着TOC含量降低而增加.  相似文献   

12.
南京和宜兴市土壤中多环芳烃(PAHs)的纵向分布   总被引:4,自引:1,他引:3  
采集了江苏省南京和宜兴市的土壤剖面样品,用高效液相色谱分析了16种PAHs在土壤样品中的含量,研究了PAHs在土壤剖面中的纵向分布特征和影响因素。结果表明,在采样点土壤0~10cm的表土中16种PAHs总量最高,为280.8~717.1μg/kg,随着土壤剖面的加深PAHs总量减少,在70~80cm土层中为8.7~97.5μg/kg。不同PAHs组分在土壤中分布的特点不同,低环的PAHs(≤3环)含量在0~80cm土层中都有分布且随土壤深度加深而减少,而高环的PAHs(≥4环)主要分布在0~30cm土层中,30cm以下土层中含量较少甚至检测不到。相关分析表明,在每个土壤剖面中PAHs总量与其土壤有机碳含量显著相关,PAHs在农田土壤剖面中的纵向分布与土壤有机碳含量、PAHs的理化性质有很大的关系。  相似文献   

13.
泉州市表层土中多环芳烃的含量、来源及其生态风险评价   总被引:4,自引:3,他引:1  
采集了泉州市不同功能区的33个表层土壤(0~10 cm)样品,利用超高效液相色谱系统(UPLC)-荧光检测器法,研究了土壤中15种优控多环芳烃的含量和分布特征,并利用比值法、因子分析和多元线性回归法对其来源进行了分析,以及采用苯并(a)芘的毒性当量浓度(TEQBaP)评价了土壤中PAHs的生态风险.结果表明,土壤中15...  相似文献   

14.
化工区土壤中多环芳烃的污染特征及其来源分析   总被引:20,自引:8,他引:12  
系统采集了天津滨海新区3个化工区28个表层土壤样品,利用GC/MS分析了16种US EPA优控多环芳烃(PAHs)的含量和组分特征,运用环数比值法和主成分因子载荷法揭示了其污染来源.结果表明,化工区土壤中PAHs最高含量达5 991.7 ng·g-1(塘沽化工区),平均含量1 185.0 ng·g-1,与国内外相关研究比较,处于中高等污染水平,工业污染排放已明显影响到周边环境中PAHs的残留,且塘沽化工区>汉沽化工区>大港采油区;塘沽和汉沽2个化工区土壤中毒性较高的4环和5环PAHs均高于其他环数PAHs,大港采油区3环所占比例明显占主导;土壤有机碳(TOC)和PAHs之间存在显著相关关系(n=28,R2=0.847,p<0.01),TOC是影响研究区域PAHs在土壤中分配的一个重要因素;煤燃烧的排放是化工区土壤中PAHs污染的主要来源,石油类挥发或泄漏对大港采油区影响显著.  相似文献   

15.
土壤中的PAHs对人体健康具有潜在的危害 .在天津采样数据的基础上 ,应用多元地统计学中的因子克立格方法 ,探讨了天津地区表层土壤中PAHs含量和一些土壤性质之间的空间相关性 .在天津地区共采集 188个表层土壤样品 ,测定了 16种PAHs的总含量、土壤 pH值、总有机碳含量和土壤粘粒含量 .研究结果表明 ,天津地区表层土壤中PAHs含量和pH、TOC、粘粒含量之间的空间相关性在不同尺度上有很大差异 .  相似文献   

16.
不同粒径大气颗粒物中多环芳烃的含量及分布特征   总被引:21,自引:3,他引:18  
采集了北京城乡结合部与郊区2003年4个季节的不同粒径大气颗粒物样品 ,运用GC/MS分析了其多环芳烃组成 .结果表明 ,17种PAHs总量为 0.84~15.223ng/m3,城乡结合部含量是郊区的1.07~6.60倍 .PAHs总量的季节性变化表现为冬季>秋季>春季>夏季,且随颗粒物粒径减小,含量逐渐增大,大约有68.4%~84.7%的PAHs吸附在≤2.0μm颗粒上.2~3环PAHs呈双峰型分布,4~6环PAHs呈单峰型分布 ,PAHs分子量越大 ,MMD值越小 ,燃煤取暖与低温是导致冬季PAHs污染增高的主要因素.  相似文献   

17.
有机碳含量对多环芳烃在土壤剖面残留及迁移的影响   总被引:1,自引:0,他引:1  
为了揭示有机碳含量(TOC)对多环芳烃(PAHs)在土壤剖面中迁移的影响,本文分析了北京地区部分典型的环境功能区(包括自然保护区、耕地、果园、农田、城区及工业区等)土壤剖面中多环芳烃和TOC的纵向分布特征,结合多环芳烃化合物的土柱淋滤实验,讨论了多环芳烃在土壤剖面上的纵向迁移特征.结果表明,不同环境功能区土壤剖面的土壤中多环芳烃的含量存在差异,且与TOC之间存在较强的正相关关系;土柱淋滤实验结果进一步证实,尽管具有不同TOC的土壤剖面中多环芳烃均可能向深层迁移,但TOC对土壤剖面中多环芳烃的残留及纵向迁移能力具有重要的影响,TOC越高,多环芳烃富集量越大,向下迁移量相对减少,反之相反;在TOC相同的情况下,多环芳烃的组成或结构特征对其在土壤剖面中的残留与迁移特征有明显的影响,淋滤水量、淋滤时间和添加PAHs量等对其在土壤剖面中的迁移作用也有一定影响.  相似文献   

18.
基于BP神经网络预测北京市加油站周边土壤多环芳烃含量   总被引:1,自引:1,他引:0  
随着我国城市化进程的迅速发展,城市中加油站数量越来越多,加油站油品的成分含量复杂多样,在石油逸散过程中会生成一系列污染物.加油站产生的多环芳烃(PAHs)会污染其附近土壤,同时对人体健康产生影响.收集了北京市117个加油站附近的土壤样品(0~20 cm),分析了7种PAHs的含量,基于BP神经网络模型,预测了2025年和2030年北京市加油站土壤PAHs含量.结果表明,7种ω(PAHs)范围在0.01~3.53 mg·kg-1之间,与《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)中土壤污染风险筛选值比较,PAHs含量低于该指标,同时上述7种PAHs的毒性当量(TEQ)均低于世界卫生组织(WHO)的标准值(1 mg·kg-1),表明它们对人体健康有较低风险.预测结果显示,快速发展的城市化与土壤PAHs含量的增加具有正相关的关系,至2030年,北京市加油站土壤PAHs的含量将持续增长.2025年和2030年北京市加油站土壤中ω(PAHs)的范围分别为0.085~4.077 mg·kg-1和...  相似文献   

19.
官厅水库周边蔬菜地表土中多环芳烃的污染   总被引:6,自引:1,他引:5  
为掌握北京市备用水源地——官厅水库周边的蔬菜地表土中多环芳烃(PAHs)的污染状况及来源,于2008年11月在延庆县小丰营蔬菜产地采集了48个表土样品(0~20cm)测定PAHs含量,并综合特征化合物比值法和因子分析/多元线性回归两种方法推断了土壤中PAHs来源.结果表明,土壤中15种PAHs单体(PAH15)的含量均服从正态分布或对数正态分布,∑15PAH几何均值为(118.71±28.63)ng.g-1(干重含量,下同),算术均值为(139.57±85.65)ng.g-1.以荷兰土壤标准衡量,71%的样点归类PAHs弱污染,与文献报道的大多数国内外农业土壤相比,尚属于较清洁的水平.成分谱分析表明,研究区域土壤中的PAHs分布谱以3环~4环化合物为主,优势化合物为PHE、FLA、FLO、PYR.校正后的FLA/(FLA+PYR),ANT/(ANT+PHE)比值表明该研究区域PAHs主要来自燃烧源.通过因子分析提取了3个主成分,分别代表①燃煤和交通燃油;②生物质燃烧和炼焦;③燃油.多元线性回归分析的结果表明,这3种来源对官厅水库周边蔬菜地表土中PAHs的贡献分别是54.0%,39.9%和6.1%.结合两种源解析方法和排放源分析,除该区域存在明显生物质燃烧源以外,其它来源的PAHs经过了一定距离的大气迁移和沉降.  相似文献   

20.
典型污灌区土壤中多环芳烃的垂直分布特征   总被引:21,自引:0,他引:21       下载免费PDF全文
研究了有污水灌溉历史的沈抚灌区、浑浦灌区和清原对照点3个土壤剖面多环芳烃(PAHs)含量的分布特征.结果表明,在美国EPA优先控制的16种PAHs中,沈抚灌区土壤剖面中检测出10种,浑浦灌区检出12种,清原检出8种.PAHs总含量峰值随着土壤深度的增加呈下降趋势,但最高值均未出现在0~2 cm土层,而是分布在2~5和5~10 cm土层.各剖面单组分分布以4~5环PAHs为主,主要污染物是荧蒽、苯并[a]蒽和苯并[k]荧蒽,低环PAHs含量峰值多集中在0~2 cm土层,中、高环PAHs大部分分布在5~10 cm土层.从单组分比值和母体多环芳烃比值可以看出,3个剖面的PAHs污染源来自于汽油、原油、煤的不完全燃烧,或通过污水灌溉,或以烟尘颗粒为载体通过大气干、湿沉降和风力输送进入到土壤环境中.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号