首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 148 毫秒
1.
将气溶胶复折射率(Aerosol Complex Refractive Index,ACRI)和气溶胶粒径吸湿增长因子(Growth Factor,Gf(RH))参数化方案进行耦合,提出了一种基于Mie散射模型的大气能见度数值改进算法.并利用成都市2017年10~12月WS600一体式气象站、AURORA-3000积分浊度计、AE-31黑碳仪以及GRIMM180环境颗粒物监测仪分别观测获得的相对湿度(RH),干气溶胶散射系数(bsp),干气溶胶吸收系数(bsp),气溶胶质量浓度(PM10,PM2.5,PM1)及其数浓度粒径分布(N[r(RH)])的地面逐时观测资料,通过与两种能见度计算模型(经验参数的Mie散射模型和统计模型)在不同能见度区间(<2km,2~5km,5~10km,>10km)模拟结果的对比分析,评估了该改进算法的适用性.结果表明:三种能见度计算方法均能较好地模拟出能见度的变化特征;改进算法通过本地化参数化方案更准确地估计出DACRI和Gf(RH),从而可更准确地模拟出四类能见度区间,对应模拟值与实测值的相关系数(R)分别为0.62,0.90,0.89,0.93,平均相对误差(MRE)分别为9.86%,10.39%,9.94%,14.06%.  相似文献   

2.
霾天能见度参数化方案改进及预报效果评估   总被引:4,自引:2,他引:2  
赵秀娟  李梓铭  徐敬 《环境科学》2019,40(4):1688-1696
为了选择适合京津冀地区能见度预报的参数化方案,为霾的预报提供更准确的能见度预报产品.根据实际应用需求,改进了基于气溶胶体积浓度建立的Chen等能见度参数化方案(S1),并利用2017年2月快速更新多尺度分析和预报系统-化学子系统(RMAPS-CHEM v1.0)的预报结果,对比评估了该方案与基于PM2.5浓度建立的参数化方案(S2)和Mie散射计算方案(S3)在京津冀地区的预报效果.结果表明:①模式系统对京津冀地区的PM2.5浓度预报总体较好,预报值与观测值非常接近,二者的相关系数在大部分地区可达0.8以上,小时相对湿度的预报值与观测值相关在0.78以上,平均误差低于3.91%.②三套方案计算的能见度都能较好地预报出2017年2月京津冀地区能见度的时间演变趋势,且在大部分时间三者计算的能见度都非常接近.总体上S1计算的能见度最低,S3计算的能见度最高,S2居中.在京津冀大部分地区,S1的均方根误差和归一化平均绝对误差最低,S3的最高,S2居中且在北京地区表现最佳.③能见度大于10 km时三套方案计算结果都偏低,其中S3的平均误差和均方根误差最低,能见度低于10 km时,特别是对出现频率较高的1~5 km低能见度的预报,S1方案的平均误差、均方根误差和归一化平均绝对误差都是最低的,更适合京津冀地区霾天气能见度的预报应用.  相似文献   

3.
北京地区大气消光特征及参数化研究   总被引:7,自引:6,他引:1  
陈一娜  赵普生  何迪  董璠  赵秀娟  张小玲 《环境科学》2015,36(10):3582-3589
为了研究大气消光系数的特征及规律,从2013~2014年在北京地区对大气能见度、气溶胶质量浓度、气溶胶散射系数、黑碳质量浓度、反应性气体以及气象要素开展了系统加强观测,并对已发表的气溶胶光散射吸湿增长因子[f(RH)]拟合方案进行了对比,系统分析了大气消光特征和影响大气消光能力的关键因子,最终建立了大气消光系数参数化模型,探讨不同季节、不同污染条件下参数化方案的特征.结果表明,气溶胶散射作用占环境总消光作用的94%以上,在夏秋季,相对湿度可以使气溶胶的散射能力提升70%~80%.包含气溶胶质量浓度和相对湿度两个因子的参数化模型,可以较好地体现出气溶胶和相对湿度对大气消光系数的影响机制,以及消光能力的季节差异.  相似文献   

4.
基于2017年1月4~7日成都地区一次重霾过程中,颗粒物粒径谱的垂直加密观测和激光雷达同步观测数据,利用Mie散射理论计算颗粒物消光系数并与激光雷达反演结果对比,计算了不同粒径谱颗粒物消光系数以及消光贡献率.分析表明:重霾期间,在不同边界层高度上颗粒物消光系数表现为PM1 > PM2.5~10 > PM1~2.5 > PM > 10,其中PM1的消光贡献率整体上维持在49.5%~69.4%,是本次重霾过程中影响颗粒物消光系数大小的主要因子.在大气边界层内,不同粒径谱颗粒物消光作用呈现出显著垂直变化和昼夜差异,白天在600m以下和700~1100m之间颗粒物消光系数出现高值区;夜间颗粒物消光系数整体上随高度呈现出明显递减趋势,在1100m处出现高值.此外,夜间在200m以下颗粒物消光系数明显大于白天,且PM>1的消光贡献率也明显大于白天.整体上,PM1消光贡献率随高度递增,而PM>1消光贡献率随高度递减.  相似文献   

5.
硫酸盐气溶胶是大气中细颗粒物(PM2.5)的重要组成部分,对霾的形成起着重要作用.传统的模式中硫酸盐生成机制主要包括SO2与·OH的气相反应和SO2·H2O水合物产生的亚硫酸与O3/H2O2的液相反应.SO2非均相生成硫酸盐的机制(在高NH3情景下,以NO2为氧化剂,非均相摄取SO2)非常重要,尤其成为重污染期间颗粒物浓度暴发性增长的原因之一.将硫酸盐非均相机制的参数化方案纳入WRF-Chem模式,模拟了2017年1月的长三角区域污染物浓度,评估了硫酸盐非均相反应对颗粒物浓度模拟的提高及其对长三角重污染的贡献.结果表明,传统WRF-Chem模式模拟的上海地区硫酸盐月均浓度为6.5μg·m-3,较观测值低估33%;尤其是在重颗粒物污染期间,低估高达127%.加入硫酸盐非均相机制后,WRF-Chem对硫酸盐的模拟效果得到显著提升,...  相似文献   

6.
雾和霾对北京地区大气能见度影响对比分析   总被引:8,自引:3,他引:5  
年10月8日—12月7日,在北京城区对ρ(BC)(BC为黑碳)、ρ(PM2.5)、大气能见度和气象要素进行连续观测,利用该资料分析雾和霾对大气能见度下降的影响. 结果表明:观测期间大气能见度为0.6~26.7 km,其中40%以上的时间大气能见度不足5 km,ρ(PM2.5)和ρ(BC)小时平均值最高分别达416.0和17.87 μg/m3. 大气能见度小于5 km且持续时间超过24 h的过程出现5次,过程1~5持续的时间分别为84、79、70、35和66 h. 过程1和2主要由霾导致,大气RH(相对湿度)小,持续时间长;过程3和5则均由雾引起,大气能见度平均值分别仅为1.70和1.99 km. 尽管过程4持续时间最短,但是由于存在低层逆温的大气层结,并且地面风速<1 m/s,导致颗粒物在水平和垂直方向的扩散均受到抑制,加之大气平均RH达到90.8%,形成雾霾复合影响,造成颗粒物污染程度超过其余4个过程,ρ(PM2.5)和ρ(BC)平均值分别达到192.1和10.15 μg/m3.   相似文献   

7.
为探讨西安市典型霾过程中的气溶胶垂直分布特征和气象要素影响,利用地面空气质量数据、CALIPSO卫星激光雷达资料以及气象要素资料,并结合HYSPLIT后向轨迹模式、天气形势分析、相关性分析等,对西安市2016年12月17-21日霾过程依据RH(相对湿度)进行干霾、湿霾和雾霾的划分,并分析不同阶段的气溶胶垂直分布特征.结果表明:前期干霾阶段,西北沙尘的输送使得高空气溶胶退偏比和色比较大,以沙尘型气溶胶为主;中期湿霾阶段,RH的增大使得低层细粒子增多,消光系数达1.7 km-1,以污染型气溶胶为主;后期干霾阶段时,低层大气中非球形粗粒子增多,以混合型气溶胶占主导.气象要素对霾过程影响较大,静风、高湿、"双逆温"效应不利于颗粒物的清除,逆温强度的变化与污染物的消长具有一定的滞后一致性.RH和ρ(PM)共同影响能见度变化,RH高于80%时,能见度由RH主导,相关系数达到-0.871;RH低于80%的污染阶段,ρ(PM)对能见度起主导作用,相关系数达0.85以上.研究显示,不同霾阶段气溶胶垂直分布特征差异较大,气象要素对霾过程的消长有重要影响.   相似文献   

8.
评估了为公共多尺度空气质量模式(CMAQ)提供气象输入场的第五代NCAR/Penn State中尺度 (MM5) 模式与天气研究和预报(WRF)模式模拟的多种气象要素的准确性;比较了2个模式提供的气象场对华北地区SO2和NO2源同化反演效果及其质量浓度预报的差异;分析了相对湿度和边界层高的变化对ρ(SO2),ρ(NO2)预报的影响及其物理机制.结果表明:WRF模式模拟的各气象要素准确性优于MM5模式,其中MM5模式对相对湿度和边界层高度的模拟值与实测值的偏差较明显,而WRF模式的模拟值与实测值较接近;相对湿度和边界层高度参数是影响CMAQ空气质量预报的关键气象要素,这2个参数的变化对ρ(SO2)和ρ(NO2)的预报有显著影响,因此,对2个参数的改进可显著减小预报误差;ρ(SO2)模拟误差减小的主要原因是垂直输送和质量调整过程对ρ(SO2)的贡献减小;而ρ(NO2)模拟误差减小的主要原因是化学反应过程对ρ(NO2)的贡献明显减小.   相似文献   

9.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

10.
成都市冬季相对湿度对颗粒物浓度和大气能见度的影响   总被引:7,自引:5,他引:2  
刘凡  谭钦文  江霞  蒋文举  宋丹林 《环境科学》2018,39(4):1466-1472
利用成都市城区2015年12月的连续在线观测数据,如相对湿度(RH)、能见度、颗粒物(PM10、PM2.5和PM1)浓度、气态污染物(SO2和NO2)浓度以及PM2.5中SO42-和NO3-浓度,探讨RH对颗粒物浓度和大气能见度的影响.结果表明,高颗粒物浓度和高RH协同作用导致低能见度事件.观测阶段,PM2.5在PM10中的平均比重为64%,表明成都市冬季细颗粒物污染严重;随着RH增加,PM2.5/PM10显著增加,表明高RH会加重细颗粒物污染.随着PM2.5浓度增加,能见度呈幂指数下降;在相同PM2.5浓度下,RH越高,能见度越低.当颗粒物浓度较低时,RH对能见度的影响作用较强;当颗粒物浓度较高时,大气消光主要由PM2.5浓度控制,RH对能见度的影响减弱.当RH大于70%时,硫氧化率(SOR)和氮氧化率(NOR)的均值分别从0.27和0.11(RH小于40%)增长至0.40和0.19,表明较高RH对二次硫酸盐和硝酸盐的生成有显著的促进作用,二次硫酸盐和硝酸盐单独或协同影响空气质量.  相似文献   

11.
北京2011年10月连续灰霾过程的特征与成因初探   总被引:17,自引:5,他引:12  
选择2011年北京地区灰霾典型发生月——10月,利用在中国环境科学研究院监测的φ(SO2)、φ(O3)、φ(NO2)、φ(CO)、ρ(PM10)、ρ(PM2.5)、ρ(BC)等数据,对该地区秋季典型灰霾过程特征及成因进行了研究. 在观测期间51.5%的时间内出现了灰霾,其中13.6%属于重度灰霾. 对灰霾期间污染物时间分布特征的分析表明:在灰霾过程中ρ(PM1)、ρ(PM2.5)、ρ(PM10)及ρ(BC)较各自月均值的升幅均大于20%,ρ(PM1)/ρ(PM2.5)(78.7%)也明显增大.大气能见度的降低与细颗粒物及亚微米颗粒物有直接关系. 对观测期间的气象因素、气体污染物时间序列和颗粒物浓度累积特征的研究表明,10月连续灰霾过程的成因可能是该月频繁出现的鞍型场静稳天气及北京周边地区存在的基数较大的细颗粒物排放源所致.   相似文献   

12.
为研究浙江省嘉兴市冬季PM、污染气体和含碳气溶胶在不同空气质量等级下的分布特征,于2013年11月28日—12月28日使用SHARP测尘仪、热电EMS系统和Sunset在线OCEC分析仪观测了PM(PM10和PM2.5)、污染气体(SO2、NO2、CO和O3)和含碳气溶胶〔OC(有机碳)、EC(元素碳)和TC(总碳)〕的质量浓度,结合气象数据和HYSPLIT模式,分析了霾污染过程中大气污染物浓度变化、日变化及其来源特征.结果表明:嘉兴市冬季霾天ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)、ρ(O3)、ρ(OC)、ρ(EC)、ρ(POC)和ρ(SOC)分别为167.90、248.86、77.79、、97.16、28.50、27.09、7.72、7.50和19.59 μg/m3,ρ(CO)为1.47 mg/m3,分别是空气质量为良时的3.00、2.50、1.29、1.84、0.86、2.59、2.19、2.13、2.82和1.50倍.降雨对不同大气污染物的清除作用不同,对粗粒子的清除作用较大,而对二次产物O3的影响较小.高ρ(PM)是造成能见度降低的主要原因,随着污染程度的加剧,PM中细粒子占比越来越高,在严重污染过程中ρ(PM2.5)/ρ(PM10)可达70.31%,比空气质量为良时高14.04%;不同污染气体的日变化不同,OC和EC的来源逐渐趋于一致,ρ(SOC)呈现出积累-爆发-积累-爆发的往复过程,边界层的日变化对污染物浓度的影响逐渐减弱.研究显示,随着霾污染的加剧,SOC气溶胶占比逐渐增加、EC和POC等一次碳气溶胶占比逐渐降低.   相似文献   

13.
年6—8月在天津市区进行的连续灰霾观测发现,灰霾发生的天数占观测时段的1/3. 灰霾日与非灰霾日颗粒物质量浓度存在显著差异,灰霾日ρ(PM2.5)与ρ(PM10)的平均值分别是非灰霾日的1.64和1.55倍. 灰霾日S含量高于非灰霾日近50%;灰霾日ρ(SO42-)和ρ(NO3-)明显高于非灰霾日,其中灰霾日ρ(NO3-)增幅最高可达251.02%;灰霾日PM2.5和PM10中的ρ(OC)、ρ(EC)均是非灰霾日的1.25倍以上. 灰霾日与非灰霾日的气象条件相近,表明此次观测期间天津市区夏季灰霾天气发生与气象条件的关系不大. 使用CMB模型(化学质量平衡模型)对PM2.5来源进行的解析表明,二次硝酸盐和二次硫酸盐对灰霾日ρ(PM2.5)的贡献率分别是非灰霾日的2.17和1.34倍,而其他源类在灰霾日和非灰霾日的贡献差异不明显,说明二次离子可能是造成天津市区夏季灰霾最主要的颗粒物源类.   相似文献   

14.
基于成都市2017年10~12月AURORA-3000积分浊度计、AE-31黑碳仪和GRIMM180环境颗粒物监测仪的地面逐时观测资料,以及该时段同时次的环境气象监测数据(大气能见度、相对湿度RH和NO2质量浓度),通过Mie散射理论与免疫进化算法反演气溶胶粒径吸湿增长因子Gf(RH),并利用光学综合法测量气溶胶散射吸湿增长因子f(RH),探究了Gf(RH)与f(RH)之间的关系.结果表明:当RH<85%,Gf(RH)和f(RH)随RH的增加均表现为平缓式增长;当RH>85%,Gf(RH)和f(RH)随RH的增加则均呈现出爆发式增长.Sigmoid函数f(RH)=17.34/(1+e-2.43·[Gf(RH)-2.15])较好地拟合了f(RH)随Gf(RH)的变化形态,其f(RH)拟合值与测量值之间的决定系数(R2)和平均相对误差(MRE)分别为0.97和4.01%.利用sigmoid函数计算Gf(RH),模拟了观测时段内一次灰霾演化过程中气溶胶的散射系数bsp(RH)和吸收系数bap,二者的模拟值与测量值基本吻合,对应的R2分别为0.99和0.98,MRE分别为2.94%和5.24%.  相似文献   

15.
毛敏娟  杨续超 《环境科学研究》2015,28(12):1823-1832
利用遥感夜间灯光数据,结合地面观测资料,以浙江省为例,研究了城市发展与气候条件、大气污染物质量浓度及霾天气之间的关系. 结果表明:当前粗放型城市发展引起的干岛、热岛、低湿、低能见度等气候效应,使1980—2010年杭州年均气温的线性增长率达到0.70 ℃/10 a、风速下降率为0.11 m/(s·10 a)、能见度下降率为1.40 km/10 a,分别高于临安的0.41 ℃/10 a、0.06 m/(s·10 a)、0.92 km/10 a. 城市发展改变大气污染物组成,对于城市化水平较高的杭州,大气中ρ(PM2.5)/ρ(PM10)的月均值介于0.52~0.69之间,明显高于临安的0.45~0.59,NO2、SO2等二次气溶胶前体物的质量浓度也明显高于临安. 浙江省大气中ρ(NO2)较ρ(SO2)高,其中临安大气中ρ(NO2)年均值较ρ(SO2)高出5.8 μg/m3,杭州的则高出21.0 μg/m3,同时杭州大气中ρ(NO2)与ρ(SO2)年均值的比值(1.70)也高于临安(1.57). 城市发展引起的气候效应及大气污染物组成变化可以解释浙江省霾日数与夜间灯光在空间分布和年代际长期变化趋势上的高度一致性. 在空间上,城市发展快、夜间灯光密集的浙北、浙江沿海、金衢盆地也是霾天气高发地区,而1960—2010年年霾日数出现的2个大跃变与改革开放及2000年后城市快速发展阶段相吻合,年霾日数与夜间灯光总灰度值之间的相关系数达到0.99. 研究显示,粗放型城市化发展是当前浙江省霾污染加剧的根本原因.   相似文献   

16.
基于成都市2017年10~12月AURORA-3000积分浊度计、AE-31黑碳仪和GRIMM180环境颗粒物监测仪的地面逐时观测资料,以及该时段同时次的环境气象监测数据(大气能见度、相对湿度RH和NO2质量浓度),通过Mie散射理论与免疫进化算法反演气溶胶粒径吸湿增长因子Gf(RH),并利用光学综合法测量气溶胶散射吸湿增长因子f(RH),探究了Gf(RH)与f(RH)之间的关系.结果表明:当RH<85%,Gf(RH)和f(RH)随RH的增加均表现为平缓式增长;当RH>85%,Gf(RH)和f(RH)随RH的增加则均呈现出爆发式增长.Sigmoid函数f(RH)=17.34/(1+e-2.43·[Gf(RH)-2.15])较好地拟合了f(RH)随Gf(RH)的变化形态,其f(RH)拟合值与测量值之间的决定系数(R2)和平均相对误差(MRE)分别为0.97和4.01%.利用sigmoid函数计算Gf(RH),模拟了观测时段内一次灰霾演化过程中气溶胶的散射系数bsp(RH)和吸收系数bap,二者的模拟值与测量值基本吻合,对应的R2分别为0.99和0.98,MRE分别为2.94%和5.24%.  相似文献   

17.
通过采集北京市亦庄经济技术开发区2016年7月和10月、2017年1月和4月4个季节典型代表月大气亚微米颗粒物PM1样品,分析研究了该开发区PM1及其水溶性离子组分的季节变化以及不同污染时段的变化特征,揭示了影响二次组分形成和霾污染形成的重要因素.结果表明:研究期间开发区PM1平均浓度为73.95μg/m3,高于北京市同期估算的PM1平均水平,为其1.13倍.夏、秋、冬、春4季PM1平均浓度分别为69.22,63.38,99.50,57.26μg/m3,明显呈现出冬季 > 夏季 > 秋季 > 春季的季节变化特征,各季节霾天PM1浓度是清洁天的1.78~3.17倍.PM1中总水溶性离子浓度为37.30μg/m3,占PM1总质量浓度的50.44%,其中二次组分SO42-、NO3-和NH4+(SNA)平均浓度占总水溶性离子浓度的86.98%,是PM1中水溶性离子的最主要组成部分.PM1总水溶性离子浓度的季节变化与SNA的变化一致,表现为冬季 > 夏季 > 秋季 > 春季.研究期间硫氧化率(SOR)高于氮氧化率(NOR),且SOR表现为夏 > 秋 > 冬 > 春,而NOR表现为夏 > 秋~春 > 冬,相应霾污染天SOR和NOR均显著高于清洁天,其中夏季霾天SO2和NO2的二次转化过程最为显著.SO2向SO42-的转化主要受相对湿度RH、温度T、NO2以及NH3的影响,且液相反应是硫酸盐形成的重要途径.NO2向NO3-的转化受RH、T、O3以及NH3的影响较大.鞍型气压场、均压场、逆温层以及南、东南和西南方向为主的近地面偏弱气团传输是影响霾污染形成的重要因素.  相似文献   

18.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号