首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 156 毫秒
1.
采用电化学沉积法将不同浓度的碳纳米管(CNT)掺入PbO2电极,得到具有高稳定性和催化活性的CNT-PbO2复合电极。扫描电子显微镜(SEM)、能量色散谱(EDS)等测试分析发现CNT掺杂到PbO2电极表面活性层中,CNT掺杂使得PbO2晶粒尺寸减小,活性表面积增大。CNT-PbO2电极降解双酚A体系中自由基生成量减少,但其降解效果反而提升。循环伏安测试(CV)、电极加速寿命测试表明,CNT-PbO2电极降解双酚A的机理主要是改性后的电极具有更强的电化学直接氧化能力和更高的稳定性。最后通过UPLC&Q-TOF MS测试得到双酚A的主要降解产物和降解路径。  相似文献   

2.
采用电沉积技术制备了铟掺杂PbO2电极 (In-PbO2). 利用扫描电子显微镜 (SEM)、X射线衍射 (XRD)、循环伏安 (CV)、极化曲线 (LSV)、强化寿命试验和荧光光谱分析了铟掺杂对电极物理、电化学性能的影响,并考察了铟掺杂PbO2电极对强力霉素模拟废水的电催化降解能力.结果表明,与未掺杂PbO2电极相比, In掺杂后PbO2电极表面更加平整致密,裂纹数量减少,晶粒明显细化,比表面积增加,产生羟基自由基的能力增强.当掺杂量为2g/L,制备的电极电化学性能最高,析氧电位最高(1.73V),电极强化寿命从84h提高到148h.电解150min后,强力霉素降解率、TOC去除率、矿化电流效率(MCE)分别为98.2%、30.4%和3.01%,优于未掺杂PbO2电极(90.1%、26.4 %、2.63%).  相似文献   

3.
系统比较了β-PbO2/Ti-Ti和BDD/Si-Ti两种电极体系处理实际印染行业反渗透浓水(ROC)的性能,考察了同步去除化学需氧量(COD)和总氮(TN)的动力学,以及对废水可生化性的改善情况.结果表明,BDD/Si-Ti电极体系的析氧电位(2.45V)和析氯电位(1.90V),以及阳极氧化电位和阴极还原电位的绝对值均高于β-PbO2/Ti-Ti电极体系;两种电极体系对COD以及TN的去除符合拟一级动力学,其中BDD/Si-Ti电极体系对COD去除的表观速率常数和能量利用效率均优于β-PbO2/Ti-Ti电极体系;而β-PbO2/Ti-Ti电极体系对TN去除的表观速率常数和能量利用效率更优.β-PbO2/Ti-Ti电极体系在5mA/cm2的电流密度下电解15min,可使反渗透浓水BOD/COD从0.18升至0.42(提高1.33倍),而BDD/Si-Ti电极体系仅提升0.78倍.两者相比,BDD/Si-Ti电极体系适用于矿化污染物,β-PbO2/Ti-Ti电极体系适用于改善废水可生化性.  相似文献   

4.
以十二烷基三甲基氯化铵(DTAC)作为添加剂,采用共沉积方式制备新型Ti/PbO_2电极,分别采用扫描电镜、X射线衍射、循环伏安扫描、交流阻抗、X射线光电子能谱及强化寿命等手段对电极性能进行表征,并以酸性红G(ARG)作为目标有机物,考察了添加剂对电极性能的影响.结果表明,经过DTAC改性,电极表层晶相仍为β-PbO_2,但电极表面颗粒细化,比表面积增加,析氧过电位由1.845V提升至1.886V,膜阻抗由102.1?/cm2下降至55.7?/cm2.此外,通过ARG电催化降解及强化寿命测试表明,改性后电极的催化性能及稳定性能均有了很大的提高.其中,对于最优改性电极(PbO_2-DTAC(0.5)),电解60min后ARG的脱色率高达86.8%,强化寿命可达到232.5h,是改性前电极寿命的2倍多(96h).  相似文献   

5.
本研究采用电化学测试和亚甲基蓝(MB)模拟废水处理两种手段评估了填充床电极反应器电催化氧化有机污染物的电极性能.循环伏安(CV)和电化学阻抗谱(EIS)拟合结果表明,填充床体系的电极面积是PbO2/Ti阳极面积的1.54倍(即床层拓展系数l为0.54),PbO2/Ti阳极(γ)和活性炭复极化粒子电极(β)用于MB氧化的有效电流占比分别为0.63、0.34;采用废水处理结果拟合所得的λγ+β为0.54和0.99,所得数值与前者相符,两种方式得以相互验证.对体系能耗和电流效率的回归分析及F检验结果证明了所构建评估策略的准确性,可为填充床体系电极性能评估提供理论与方法支撑.  相似文献   

6.
采用水热法制备了以氧化还原石墨烯(rGO)为载体的锰钴水滑石(LDH),即MnCo-LDH/rGO复合材料并研究其氧还原性能.在Mn/Co物质的量比为1:3的条件下,MnCo-LDH和MnCo-LDH/rGO的形貌和催化性能最为突出.与MnCo-LDH相比,MnCo-LDH/rGO在Na2SO4溶液中的氧化还原峰更加明显(-0.425V),且峰电流更大,达到0.749mA/cm2.将MnCo-LDH/rGO作为阴极,在120min内持续提供30mA/cm2的电流可使浓度为20mg/L的罗丹明B染料(RhB)降解98.6%,具备良好的降解性能.旋转圆盘(RDE)及自由基淬灭实验结果显示,反应中转移电子数为2,且主要自由基为·OH.  相似文献   

7.
采用水热法制备了以氧化还原石墨烯(rGO)为载体的锰钴水滑石(LDH),即MnCo-LDH/rGO复合材料并研究其氧还原性能.在Mn/Co物质的量比为1:3的条件下,MnCo-LDH和MnCo-LDH/rGO的形貌和催化性能最为突出.与MnCo-LDH相比,MnCo-LDH/rGO在Na2SO4溶液中的氧化还原峰更加明显(-0.425V),且峰电流更大,达到0.749mA/cm2.将MnCo-LDH/rGO作为阴极,在120min内持续提供30mA/cm2的电流可使浓度为20mg/L的罗丹明B染料(RhB)降解98.6%,具备良好的降解性能.旋转圆盘(RDE)及自由基淬灭实验结果显示,反应中转移电子数为2,且主要自由基为·OH.  相似文献   

8.
采用电流调控方式制备多催化位点的高效Ti/PbO2阳极,并对其形貌、晶型、电化学性能等进行表征,以常见抗生素阿莫西林(AMX)作为目标有机物,考察了阿莫西林在电催化降解中的毒性演变过程.结果表明,随沉积电流密度梯级升高,电极表层形貌由“四棱锥型”向“菜花状”转变,但晶相仍为β-PbO2,同时电极伏安电荷量提高,膜阻抗降低.毒性检测结果表明,水体中AMX浓度与斜生栅藻的藻密度呈负相关,但对其叶绿素合成表现为“低浓度促进,高浓度抑制”效果.此外,优选制备电极对AMX具有较好的降解效果,AMX水体毒性水平随电催化降解呈现先升高后降低趋势,转录效应指数TELItotal值由最初1.54升至2.61,并经150min的持续电催化降为1.63.经110种基因应激结果表明,AMX在电催化降解中造成的细胞氧化应激与蛋白质应激最为明显.  相似文献   

9.
将三维电极和电Fenton系统结合电催化氧化降解甲基橙废水.制备了Fe3O4负载的氧化石墨烯粒子电极GO@Fe3O4(GF)和球形凝胶结构SA/GO@Fe3O4(SGF)粒子电极,对两种粒子电极进行了表征,探讨了三维电极-电Fenton(3D-EF)系统电催化氧化性能的影响因素,并进行了反应动力学分析,结合Box-Benhnken中心复合响应面设计建立响应面二次多元回归方程模型;采用紫外可见光谱和GC-MS技术研究甲基橙降解过程.结果表明,SGF粒子电极表面形成三维网络状褶皱结构.在初始pH=5,粒子电极投加量3.0g/L,反应时间90min,电流密度30mA/cm2,外加电压7V的反应条件下,SGF粒子电极体系的甲基橙色度和COD去除率分别是98.8%和87.5%,均高于GF粒子电极体系的甲基橙色度去除率87.2%和COD去除率71.2%.响应面模型预测的反应条件和甲基橙色度去除率和实验结果吻合.推测甲基橙降解过程分为3个阶段:断键氧化过程、开环过程和完全氧化过程.  相似文献   

10.
该文以UV185为光源,研究紫外高级氧化技术对印染废水中酸性红G(ARG)的光降解反应机理。结果表明:UV185对ARG降解具有显著效果,远远优于UV254光源,光照20 min后降解率可达97.4%。光照功率增加对ARG降解效果显著。酸性条件对ARG的降解速率有提升作用,碱性条件有抑制作用,p H为3.0、6.7、9.0、11.0时,反应动力学常数分别是0.261、0.174、0.151、0.093 min-1。降解反应动力学过程符合准一级动力学模型,R2>0.990。自由基捕获实验说明UV185光照中产生的活性物种·OH和1O2对ARG降解贡献程度较大,而·O2-无贡献。台式电子顺磁共振波谱仪检测到·OH和1O2存在,未检测到·O2-。CO3...  相似文献   

11.
采用溶胶-凝胶法和电化学沉积法制备了Ti/SnO2-Sb/Ce-PbO2电极,并对制备的电极表面形貌、晶体结构和电化学性能进行了分析,进一步探究了该电极对甲基橙和4-硝基苯酚的降解效果.结果表明,由Ce改性的Ti/SnO2-Sb/Ce-PbO2电极具有稳定的结构和更好的电化学活性,析氧电位可达1.56V.在电极间距为2cm,电流密度为30mA/cm2,目标污染物的浓度为100mg/L,电解质浓度为0.10mol/L时,作用120min后,Ti/SnO2-Sb/Ce-PbO2电极对甲基橙和4-硝基苯酚的降解率分别达到了99.59%和96.16%,180min后TOC的去除率分别达到了56.71%和54.87%,研究结果为该电极降解有机污染物提供了一定的技术支撑.  相似文献   

12.
采用Ti/PbO2阳极电解3种典型的氟喹诺酮类抗生素(诺氟沙星、甲磺酸培氟沙星与盐酸环丙沙星)废水,通过优化pH值、电解质浓度条件,分析3种抗生素的去除效果、降解过程和产物.结果表明电化学法对3种氟喹诺酮类抗生素均有明显的降解效果,电解240min下的最优降解条件为pH值控制在7.8~8.0,电解质硫酸钠投加量为0.04mol/L.在最优条件下3种抗生素的去除率均大于97%,降解过程均符合一级动力学方程,UV254值的去除率较高(去除率大于67%),处理后废水的芳香度和SUVA值明显下降.液质联用分析结果和文献调研显示,电解有机产物主要通过脱氟、哌嗪环的转化和喹啉环的转化这三个途径生成,且随电解时间增加呈现先增后减的趋势,同时产生F-、NH4+和NO3-等无机物.Ti/PbO2阳极能有效电解废水中3种典型氟喹诺酮类抗生素,可用作生物处理等方法的预处理.  相似文献   

13.
采用化学浸渍法将Fe@Fe2O3纳米线负载在活性炭纤维/泡沫镍上组成Fe@Fe2O3/ACF/Ni复合阴极,以钛基铂(Pt/Ti)为阳极,考察载铁量、初始pH值和不同电化学体系对除藻效果的影响,探究无供氧条件下Pt/Ti-Fe@Fe2O3/ACF/Ni电化学体系除藻的效能;基于·OH间接检测、铁离子浓度、H2O2浓度及pH值的分析和·O2-的检测研究Pt/Ti-Fe@Fe2O3/ACF/Ni中性电化学体系反应机制.结果表明,当制备阴极阶段投加0.03g FeCl3×6H2O,初始藻浓度为0.7×109~0.8×109个/L,电流密度为75mA/cm2,初始pH6.2时,电解60min,该体系除藻率可达到92.3%.在Pt/Ti-Fe@Fe2O3/ACF/Ni电化学体系中,Fe@Fe2O3/ACF/Ni阴极可通过电化学反应产生大量·OH和·O2-,使藻细胞破裂死亡;该体系除藻的主要机理是非均相电Fenton反应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号