首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
于2020年4~8月在青藏高原东南部玉龙雪山进行PM2.5采样,共采集44个样本,测定其水溶性离子成分、水溶性有机碳(WSOC)浓度、总碳(TC)浓度及其稳定碳同位素组成(δ13CTC).结果表明,玉龙雪山春夏季TC浓度分别为(7.1±3.8)μg/m3和(2.9±0.7)μg/m3,WSOC浓度分别为(3.3±2.1)μg/m3和(1.5±0.4)μg/m3,均呈现春高夏低的变化趋势.春夏季δ13CTC值分别为(-24.7±1.0)‰和(-26.0±0.6)‰,春季较夏季偏正,表明可能受到不同来源影响.通过对非海盐钾离子(nss-K+)相关性、NASA火点图及后向轨迹分析可知,东南亚地区春季生物质燃烧可能是主导原因.利用贝叶斯模型计算玉龙雪山PM2.5中TC来源贡献,结果表明春季主要来源于生物质燃烧和煤燃烧,贡献比分别为60.6%和23.5%;夏季主要来源于生物质燃烧、植物蒸发和机动车排放,同时二次有机气溶胶形成对TC的贡献也不可忽视.  相似文献   

2.
秸秆露天焚烧典型大气污染物排放因子   总被引:2,自引:0,他引:2  
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致.  相似文献   

3.
森林可燃物燃烧释放的大量含碳物质对大气环境和生态系统碳平衡具有重要影响,揭示森林可燃物燃烧的含碳物质排放特性具有重要的科学意义.运用自主设计的生物质燃烧系统,模拟福建省4种主要乔木树种——马尾松、杉木、樟树、桉树的枝、叶燃烧,分析其在不同燃烧状态(阴燃、明燃)下含碳气体(CO、CO2、CxHy)和PM2.5的排放因子(分别以EFCO2、EFCO、EFCxHy、EFPM2.5表示)及PM2.5中的碳质组分之间的差异性.结果表明,马尾松、杉木、樟树、桉树燃烧排放的含碳气体、PM2.5的排放因子及PM2.5的碳质组分在不同燃烧状态下差异较大,阴燃时EFCO2、EFCO、EFCxHy、EFPM2.5平均值在分别为(1 400.7±76.5)(297.6±16.2)(25.2±3.9)(23.9±4.3)g/kg,明燃时分别为(1 582.8±73.2)(253.6±16.1)(17.2±3.7)(8.4±2.8)g/kg,除CO2外其他多为阴燃显著高于明燃.针叶树种(杉木、马尾松)枝、叶在阴燃时EFPM2.5高于阔叶树种(樟树、桉树),而明燃时差异相对较小.PM2.5中OC(有机碳)、EC(元素碳)、TC(OC+EC)的质量分数阴燃时分别为45.6%、12.0%、57.6%,明燃时分别为42.9%、17.6%、60.5%.EFOC/EFPM2.5、EFEC/EFPM2.5、EFOC/EFEC在两种燃烧状态下具有不同的特征,其特征值可作为区分不同燃烧源或不同燃烧状态的指标;EFOC/EFPM2.5在明燃和阴燃时差异不大,平均值分别为0.49、0.46;EFEC/EFPM2.5明燃显著高于阴燃,平均值分别为0.18、0.12;4种乔木的枝、叶燃烧的EFOC/EFEC明燃低于阴燃,平均值分别为2.59和4.01.在两种燃烧状态下OC与PM2.5的排放因子均呈显著相关.研究显示,不同燃烧条件以及不同燃料燃烧对排放含碳物质具有显著影响.   相似文献   

4.
为探究乔木燃烧释放烟气及颗粒物特性,运用自主研发的可燃物燃烧烟气分析系统,对云南省主要乔木树种滇青冈(Cyclobalanopsis glaucoides)、光叶石栎(Lithocarpus mairei)、旱冬瓜(Alnus nepalensis)、华山松(Pinus armandii)、金合欢(Acacia farnesiana)、麻栎(Quercus acutissima)、栓皮栎(Quercus variabilis)、云南油杉(Keteleeria evelyniana)的不同器官(枝、叶、皮)分别进行模拟燃烧,实测其在不同燃烧状态(阴燃/明燃)下释放的CO、CO2、CxHy、NOx及PM2.5的排放因子.结果表明:①乔木树种不同器官燃烧释放的烟气中颗粒物排放因子存在差异,其中,在不同燃烧状态下CO、PM2.5、CxHy、NOx的排放因子表现为叶 > 枝 > 皮,CO2排放因子表现为叶 > 皮 > 枝.②8种乔木明燃下CO、CO2、CxHy、NOx、PM2.5的排放因子平均值分别为(176.52±25.40)(1 250.32±168.04)(32.82±8.68)(2.53±0.71)(15.59±5.36)g/kg,阴燃下分别为(250.44±37.43)(1 062.11±145.95)(44.82±9.97)(1.92±0.57)(22.56±7.28)g/kg.CO、CxHy、PM2.5的排放因子呈阴燃>明燃的排放特征,且大部分乔木树种的CO、CxHy、PM2.5排放因子在不同燃烧状态下差异显著.③不同乔木树种燃烧烟气的颗粒物排放因子存在差异,其中CO、CO2、CxHy、PM2.5的排放因子均呈针叶树种>阔叶树种的特征,NOx排放因子表现为阔叶树种>针叶树种的特征,但针、阔叶树种之间差异不显著.④不同燃烧状态下,叶燃烧产生的污染物浓度与其元素含量呈显著正相关,且阴燃状态下3种器官的CO排放因子均与自身碳元素含量呈显著正相关.研究显示,不同可燃物类型和燃烧状态对乔木燃烧释放烟气及颗粒物均有影响,不同器官之间燃烧排放特性存在一定差异,且乔木元素含量对其燃烧释放气体污染物的排放因子具有一定影响.   相似文献   

5.
北京市交通扬尘PM2.5排放清单及空间分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为建立一种自下而上的交通扬尘PM2.5排放清单方法,对北京市不同区域、不同类型道路的路面积尘负荷进行了采样和实验室分析,对各类路网的道路车流量和车辆类型进行了调查和统计,建立了北京市道路交通扬尘PM2.5排放清单,并对其空间分布进行了分析. 结果表明:北京市城区快速路、主干道、次干道、支路和胡同的交通扬尘PM2.5排放因子分别为(0.05±0.03)(0.09±0.05)(0.11±0.05)(0.16±0.14)和(0.27±0.20)g/(km·辆),相应各类型道路的交通扬尘PM2.5排放强度分别为(7.21±4.66)(5.27±3.03)(3.34±1.49)(2.84±2.49)和(0.54±0.40)kg/(km·d);郊区高速路、国道、省道、县道、乡道和城市道路的交通扬尘PM2.5排放因子分别为(0.10±0.03)(0.50±0.33)(0.39±0.37)(0.41±0.41)和(0.65±0.31)(0.19±0.08)g/(km·辆),各类型道路交通扬尘的PM2.5排放强度分别为(3.82±1.31)(10.00±6.58)(3.93±3.74)(1.64±1.63)(0.65±0.31)和(0.74±0.32)kg/(km·d). 北京市道路交通扬尘PM2.5的年排放量为13 565 t,从空间分布上看,郊区交通扬尘PM2.5年排放量、单位道路长度排放量以及排放因子均高于市区,而城区单位行政区面积的交通扬尘PM2.5排放量高于远郊区县. 从交通扬尘PM2.5排放的空间分布特征看,在继续加强城区交通扬尘控制的同时,应采取措施控制远郊区县公路的扬尘排放. 自下而上的交通扬尘PM2.5排放清单提高了排放的时空分辨率,能够识别路网中高排放的区域和路段,为交通扬尘总量管理和减排目标考核提供了一种技术手段.   相似文献   

6.
农作物秸秆燃烧PM2.5排放因子的研究   总被引:16,自引:2,他引:14  
农作物秸秆燃烧是一类重要的生物质燃烧形式,已是大气细粒子的来源之一.建立了实验室模拟-稀释通道采样系统,并利用这一系统测定了浙江、四川、河南、河北、北京(主要粮食产区)五地的玉米、小麦和水稻秸秆燃烧过程中PM2.5的排放因子.结果表明:实验室模拟明火燃烧的w(PM2.5)为7.2~39.0 g/kg,与文献[5],[7]~[8]中野外燃烧结果相似,表明两者燃烧状态具有相似性;排放因子受秸秆燃烧状态影响显著,闷火燃烧为明火燃烧的2.4~11.5倍;同时,农作物种类不同PM2.5排放因子也存在明显差别;而排放因子随秸秆生长地域变化比较小.   相似文献   

7.
生物质锅炉与燃煤锅炉颗粒物排放特征比较   总被引:9,自引:0,他引:9  
选择2台设计结构不同的生物质锅炉(BB1、BB2),针对木质和秸秆2种生物质燃料开展烟尘、PM10和PM2.5排放特征的研究,并与燃煤锅炉进行比较. 结果表明:2台生物质锅炉的大气污染物排放质量浓度都未达到北京市DB 11/139—2007《锅炉大气污染物排放标准》的要求;2台生物质锅炉颗粒物的排放因子存在差别,燃烧木质成型燃料时,BB1和BB2生物质锅炉除尘器后的烟尘排放因子分别为207.10和465.51mg/kg,PM10排放因子分别为75.18和149.61mg/kg, PM2.5排放因子分别为58.48和106.86mg/kg;燃烧秸秆成型燃料时,BB1和BB2生物质锅炉除尘器后的烟尘排放因子分别为142.86和1200.86mg/kg,PM10排放因子分别为63.63和102.01mg/kg,PM2.5的排放因子分别为50.90和76.51mg/kg. 与热功率相近的燃煤锅炉比较,2台生物质锅炉除尘器前的PM10平均排放因子低30.41%,PM2.5平均排放因子却高36.84%,即PM2.5在生物质锅炉烟尘中所占比例更高. 尽管利用可再生能源的生物质锅炉具有很好的发展前景,但目前该类锅炉仍存在污染物排放不达标的现象,因此,需要提高热能利用效率和除尘效率,以减少污染.   相似文献   

8.
为探究浙江省城市大气颗粒物的组分污染特征,基于2019年10月1日至2020年9月30日浙江省内11个点位4个区域的手工采样监测数据,分析了浙江省PM2.5组分不同区域不同季节的污染特征.结果表明,采样期内浙江省各地区ρ(PM2.5)平均值范围为34.3~46.4μg·m-3,其中浙西和浙北内陆地区PM2.5浓度相对较高,分别高出均值15.1%和13.2%,浙东和浙南沿海地区PM2.5浓度相对较低,分别低于均值8.4%和14.9%.季节性特征呈现秋季和冬季较高,夏季最低,空间分布来看,浙南地区的PM2.5浓度春季、秋季和冬季季节变化不明显,浙西地区为:秋季>冬季>春季>夏季,浙北和浙东地区均呈现冬季>秋季>春季>夏季的季节变化特征.内陆地区采样期内,风景名胜区、行政区、居民区和商业交通居民混合区的ρ(PM2.5)分别为:(40.2±10.2)、(46.3±9.6)、(50.1±10.6)和(46.7...  相似文献   

9.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

10.
东北地区农业源一次颗粒物排放清单研究   总被引:3,自引:0,他引:3  
采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.  相似文献   

11.
沈嵩  刘蕾  温维  邢奕  苏伟  孙嘉祺 《环境工程》2022,40(2):71-80
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。  相似文献   

12.
基于稳定同位素技术与正定矩阵因子分解(PMF)模型,探究黄石市城区大气PM2.5中碳氮组分的污染特征和来源.结果表明,黄石市城区大气PM2.5中总碳浓度[ρ(TC)]与总碳同位素组成(δ13CTC)均呈冬高夏低的季节性变化特征,夏季分别为(4.4±1.2)μg·m-3和(-26.3±0.5)‰,冬季分别为(9.9±3.5)μg·m-3和(-25.5±0.5)‰;总氮浓度[ρ(TN)]在夏季[(9.1±9.1)μg·m-3]明显低于冬季[(62.4±26.4)μg·m-3],而总氮同位素组成(δ15NTN)在夏季[(12.8±1.9)‰]较冬季[(2.9±4.0)‰]明显富集.除本地源贡献外,黄石市PM2.5中碳氮组分主要受湖南北部近距离区域排放和西北方向远距离传输影响.贝叶斯混合模型(MixSIAR)与PMF模型解析出机动车排放源为PM2...  相似文献   

13.
选取了7种不同成熟度的原煤,模拟煤炭家用取暖燃烧过程,基于稀释通道采样方法,测定了PM2.5、有机碳(OC)、元素碳(EC)和多环芳烃(PAHs)的排放因子(Emission factors,EFs),分析了原煤自身特征参数与污染物排放因子的关系,并计算了原煤排放PAHs的特征比值.结果表明,地质成熟度高的无烟煤燃烧PM2.5、OC、EC和PAHs的排放因子最低,分别为(0.28±0.07)、(0.07±0.04)、(0.003±0)g·kg-1和(1.15±0.84)mg·kg-1.随着地质成熟度的降低,PM2.5、OC、EC和PAHs的排放因子呈波动上升的趋势,具有中等地质成熟度(挥发分为28.08%)的烟煤PM2.5、OC和PAHs的排放因子最高,分别为(5.17±0.33)、(2.50±0.93)g·kg-1、(240.39±180.55)mg·kg-1,比地质成熟度高的无烟煤高出1~2个数量级.相关关系...  相似文献   

14.
通过自主设计的燃烧装置,对云南省6种典型乔木树种的不同器官(枝、叶、皮)室内模拟阴、明燃两种燃烧过程,收集燃烧排放颗粒物(PM2.5)并测定K、Mg等8种元素排放因子,比较不同燃烧状态释放PM2.5中元素含量的差异,同时分析各元素排放因子与可燃物自身元素含量之间的相关性.结果表明:可燃物中K、Mg和Ca元素含量较高,范围为(137.74~4670.70) mg/kg,微量元素Mn含量突出;阔叶可燃物元素含量普遍高于针叶,器官间元素含量差异显著;燃烧释放PM2.5中K、Na元素排放因子较高,范围为(0.4269~4.9321)~(0.6311~3.0856) mg/kg,微量元素Zn较高、Cu最少,范围为(0.0409~0.3670)~(0.0029~0.0458) mg/kg,常量元素高于微量;树种间元素排放因子表现针叶高于阔叶,器官间较可燃物自身差异增大;燃烧状态对排放因子存在影响,常量元素普遍表现为明燃>阴燃,微量元素无明显规律;PM2.5与可燃物各元素含量比值中,Na元素最高,其余元素占比普遍0~1%范围,微量元素含量比高于常量,针叶高于阔叶;可燃物的化学性质对其排放特性影响显著,可燃物与PM2.5的元素间相关性较高,相关水平普遍达0.600以上,器官间不同元素相关水平表现为:常量元素普遍高于微量元素,针叶略高于阔叶,叶>皮>枝,明燃高于阴燃.  相似文献   

15.
基于2019年3月~2020年2月环境空气质量监测数据,分析了运城市PM2.5污染的时空分布特征,并利用HYSPLIT后向轨迹模型和聚类分析等方法探讨不同季节运城市PM2.5污染的输送路径和潜在源区.结果表明,运城市ρ(PM2.5)冬季最高(111.24μg·m-3),夏季最低(30.02μg·m-3),PM2.5/PM10秋冬季均大于0.6,表明运城市秋冬两季颗粒物污染以细颗粒物为主;空间上ρ(PM2.5)年均值呈现北部和中部高、东部和西部低的分布特征,高值区PM2.5与SO2、 NO2和CO呈显著强相关,表明本地排放对高值区ρ(PM2.5)影响较大,春季和冬季最高值分别位于河津市(58.50μg·m-3)和稷山县(142.33μg·m-3),夏季最高值位于南部的平陆县(36.92...  相似文献   

16.
研究了民用燃煤在不同燃烧阶段排放PM2.5的质量浓度分布特征.结果表明,散煤与正烧炉在旺火阶段排放颗粒物粒径主要集中在0.2μm以下(d50=0.15μm),加煤和封火阶段在0.2~0.5μm (d50=0.38mm),质量占比46.6%~68.97%.型煤与正烧炉在各阶段排放的颗粒物均以0.2μm以下颗粒物为主,质量占比44.64%~56.24%.扫描电镜(SEM)观察到燃煤排放PM2.5为大量超细颗粒物聚集形成的簇团状结构.用碳平衡法计算得到散煤加煤阶段的PM2.5排放因子为4.72g/kg,分别是旺火和封火阶段的12和11倍.将散煤更换为型煤,能够使得加煤阶段的PM2.5排放因子减少90.9%,从而显著降低PM2.5排放.  相似文献   

17.
研究了民用燃煤在不同燃烧阶段排放PM2.5的质量浓度分布特征.结果表明,散煤与正烧炉在旺火阶段排放颗粒物粒径主要集中在0.2μm以下(d50=0.15μm),加煤和封火阶段在0.2~0.5μm (d50=0.38mm),质量占比46.6%~68.97%.型煤与正烧炉在各阶段排放的颗粒物均以0.2μm以下颗粒物为主,质量占比44.64%~56.24%.扫描电镜(SEM)观察到燃煤排放PM2.5为大量超细颗粒物聚集形成的簇团状结构.用碳平衡法计算得到散煤加煤阶段的PM2.5排放因子为4.72g/kg,分别是旺火和封火阶段的12和11倍.将散煤更换为型煤,能够使得加煤阶段的PM2.5排放因子减少90.9%,从而显著降低PM2.5排放.  相似文献   

18.
为研究长三角背景点夏季PM2.5污染特征,于2018年5月30日—8月15日在上海市崇明岛对PM2.5样品进行昼夜采集,并对其中水溶性无机离子(Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+)进行了分析.运用PSCF(潜在源贡献)方法判别污染物排放源区,并结合PCA(主成分分析)和PMF(正交矩阵因子)源解析探究PM2.5来源.结果表明:①观测期间崇明岛ρ(PM2.5)平均值为(33±21)μg/m3,低于GB 3095—2012《环境空气质量标准》一级标准限值(35 μg/m3),但在部分时段存在显著超标现象,ρ(PM2.5)最高值在120 μg/m3以上.②水溶性无机离子质量浓度平均值为(14±9.3)μg/m3,占PM2.5的42.4%,其中SNA(SO42-、NO3-、NH4+三者统称)为主要离子,占水溶性离子总质量浓度的85.7%.③n(NH4+)/n(SO42-)(NH4+与SO42-的摩尔浓度比)显示,清洁期〔ρ(PM2.5) < 15 μg/m3〕呈贫铵状态,过渡期〔15≤ρ(PM2.5)≤35 μg/m3〕和污染期〔ρ(PM2.5)>35 μg/m3〕均呈富铵状态;过渡期SNA主要以NH4HSO4和NH4NO3形式存在,而污染期则主要以(NH4)2SO4和NH4NO3形式存在.④通过对两次典型污染事件进行离子相关性分析和PSCF分析发现,E1污染事件(5月30日—6月8日)为局地生物质燃烧型污染事件,E2污染事件(7月23日—8月1日)为区域传输污染事件.源解析结果进一步表明,两次典型污染事件期间气态污染物的二次转化对PM2.5的贡献最显著,贡献率分别为62.8%和59.8%;其次是生物质燃烧,其贡献率分别为32.5%和20.1%;E2污染事件期间海盐源对崇明岛PM2.5贡献率较高(16.6%),远超过E1污染事件期间对PM2.5的贡献率(2.7%).研究显示,区域输送对崇明岛PM2.5有显著贡献,二次颗粒物累积是崇明岛PM2.5超标的主要原因.   相似文献   

19.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

20.
排放因子是估算污染物排放量的重要参数,为获取可靠的、有区域特征的固体燃料排放因子,2018年在我国西部9个省/自治区利用稀释采样系统入户收集了226个固体燃料燃烧样本,获得了薪柴、秸秆和煤在不同类型炉具中燃烧排放CO2、CO、OC、EC、PM2.5的排放因子。结果表明:秸秆类较易燃烧的燃料有较高的OC、EC、PM2.5排放因子,煤有较高的CO2、CO排放因子。炉灶类型对薪柴的OC、PM2.5的排放因子影响稍大,薪柴在炕中燃烧的OC、PM2.5排放因子比在砖灶和铁炉高约2—3.1倍,但秸秆在不同炉具中的排放因子差异较小。受不同区域燃料和炉灶类型以及操作习惯差异的共同影响,排放因子呈现明显的区域性差异,高CO2排放因子分布在以煤为主要燃料的区域,高OC、EC、PM2.5排放因子分布在以生物质为主要燃料的区域,并且CO、OC和PM2.5排放因子的区域分布呈现一定的相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号