首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 250 毫秒
1.
方雪慧  赵洁  舒莉  高永  叶招莲 《环境科学》2015,36(6):2010-2018
采用4种不同波长的准分子光源(Xe Cl*、Kr Cl*、Xe Br*和Kr Br*)降解气相的乙酸乙酯.对比了外加3种负载型光催化剂(有机膜负载Ti O2、有机膜负载石墨烯和纱网负载Ti O2)条件下乙酸乙酯的去除率,考察了光源类型、辐射功率和气体初始浓度对去除率的影响.同时,测定了不同光源的辐射光谱和辐射功率,计算了不同反应条件下的光子效率.结果表明,乙酸乙酯去除率按Kr Br*Kr Cl*Xe Cl*Xe Br*依次降低,而Xe Cl*和Kr Br*光源降解乙酸乙酯气体可以得到较高的光子效率;有机膜负载Ti O2比不加催化剂时乙酸乙酯去除率和光子效率都有所提高,但提高幅度不大.气体流速和乙酸乙酯初始浓度升高,光子效率升高.采用Kr Br*准分子灯直接光解乙酸乙酯,实验条件为:辐射功率0.76 W,乙酸乙酯初始浓度946mg·m-3,气体流速600 m L·min-1,光子效率为5.63%.  相似文献   

2.
介质阻挡放电降解乙酸异丁酯气体   总被引:2,自引:1,他引:1  
采用介质阻挡放电(DBD)降解模拟乙酸异丁酯(IA)气体,结果表明:当ρ(IA)为1 788 mg/m3,气体流速为1.8 m/s,外施电压为9.0 kV时,IA去除率达75.3%. 外施电压升高,初始ρ(IA)和气体流速下降,IA去除率升高. 放电间隙对DBD降解IA废气也会产生一定的影响. 能率与气体流速无线性关系,为了得到较高的能率,外施电压应调节至7.5和9.0 kV. 考察了DBD降解实际IA工业废气的效果、费用和可行性,结果表明:废气量为2 000 m3/h,DBD反应管中的气体流速为5.4 m/s,单个DBD电源输入电压为16 kV时,IA去除率达80%以上,单位体积IA废气的处理费用为0.012元/m3. 对DBD降解IA的产物进行了分析,并初步探讨了降解机理.   相似文献   

3.
外置式联合等离子体光解技术去除苯乙烯气体   总被引:3,自引:3,他引:0  
开发了用一个高压电源同时产生等离子体和KrI* 准分子紫外辐射的外置式联合等离子体光解(Outer Combined Plasma Photolysis, OCPP)技术,并用于降解模拟流动态苯乙烯气体. 结果表明:在Kr和I2充入量分别为26.60 kPa和6 mg, 气体流速为3.26 m3/h, 初始ρ(苯乙烯)为1 265 mg/m3,外施电压为9.0 kV的条件下,苯乙烯的去除率达84.4%;与介质阻挡放电技术相比,苯乙烯的去除率提高了20.6%,能率提高了5.7 g/(kW·h). 同时,研究了OCPP技术降解苯乙烯的影响因素,包括Kr和I2的充入量、石英材质、气体流速、初始ρ(苯乙烯)及反应器结构. 采用红外光谱仪和气质联用仪分析了结焦产物,探讨了OCPP技术降解苯乙烯的机理.   相似文献   

4.
光助芬顿反应催化降解气体中甲苯   总被引:3,自引:0,他引:3  
以甲苯作为挥发性有机污染物(VOCs)的代表,利用连续进气动态实验装置,研究光助芬顿反应降解气体中甲苯的作用.考察了芬顿试剂溶液初始p H、H2O2浓度、Fe2+浓度以及甲苯初始浓度对降解甲苯的影响,并利用在线质谱和色谱对产物进行了定性、定量分析.结果表明,紫外光照加快了羟基自由基的生成,显著提高了气体中甲苯的去除率;p H=3.0、H2O2浓度为20 mmol·L-1、Fe2+浓度为0.3 mmol·L-1的条件下,甲苯去除率最高;当甲苯初始浓度为260 mg·m-3时,去除率能够达到98%;光助芬顿反应催化降解气体中甲苯实验未检测到CO2之外的中间产物,CO2产率分析表明去除的甲苯全部转化为CO2.  相似文献   

5.
微波无极灯光解模拟CS2废气   总被引:2,自引:0,他引:2  
利用自行研制的微波无极灯对模拟二硫化碳废气进行光解.结果表明,微波无极灯光解CS2的效率随其初始浓度的增加而降低;停留时间是影响CS2转化率的重要因素;体系中水汽的增加有利于光解效率的提高.当管道气体流速为0.2 m/s,初始浓度约100 mg/m3,湿度约40%时,微波无极汞灯光解CS2的效率可达75%以上;微波无极碘灯对CS2的光解效率亦达到50%以上.同时探讨了CS2光解的反应机理,主要是紫外光直接光解和·OH自由基氧化的共同作用.  相似文献   

6.
电晕放电等离子体技术处理水中四环素的研究   总被引:2,自引:1,他引:1  
采用电晕放电等离子体技术降解水中的四环素,研究了在反应体系中,初始浓度、输入功率、电极间距、空气流量及初始pH对四环素去除效率的影响.同时,还对四环素在降解过程中不同时段的COD、TOC和B/C变化进行了研究,并对其降解产物进行了分析和讨论.实验结果表明:电晕放电等离子体对水中四环素具有较好的去除效果,在四环素初始浓度为200 mg·L-1、pH=2.47、初始电导率为1.50 mS·m-1、空气流量为0.06 m3·h-1、电极间距为4 mm、输入功率为45.0 W的条件下,反应20 min后,四环素的去除率可达到99.1%,COD去除率可达31.2%,TOC去除率可达80%左右,其B/C比提高为0.30,有效地改善了废水的可生化性.  相似文献   

7.
采用介质阻挡放电降解二硫化碳(CS2)模拟废气,考察了外加气体空气、氮气(N2)、电源输入功率、初始浓度和停留时间对CS2转化率的影响。结果表明:CS2的去除率呈现空气>N2。在输入功率63 W,停留时间为5.34 s,CS2的初始浓度300 mg/m3,N2氛围下的去除效率为36.9%,而空气氛围下的去除效率可达62.5%。在N2与空气氛围下其产物明显不同,在空气氛围下,主要产物为SO2、COS、CO和CO2;而在N2氛围下其主要产物为大量单质硫、少量CO与CO2。对DBD降解CS2的机理分析表明,在N2条件下主要是高能电子与紫外光的作用;而在有空气条件下,O2的存在促进了CS2的深度氧化。  相似文献   

8.
准分子灯光照降解水相中烷基酚的动力学   总被引:1,自引:1,他引:0  
准分子灯辐射的206 nm紫外光可以直接光解4-壬基酚(4-NP)和4-辛基酚(4-OP),但不能使之完全氧化为CO2.相同光照条件下,4-OP的去除率高于4-NP.采用拟一级动力学模型和修正的动力学模型对光解过程进行拟合,得到两种烷基酚206 nm直接光解的速率常数.结果表明,烷基酚初始浓度越低,光解速率常数越高.两种动力学模型对低浓度烷基酚直接光解都具有一定的适用性,但修正的模型不适合高浓度4-OP直接光解.UV/H2O2体系中,烷基酚的降解速率明显提高,但只有当H2O2加入量很高时,TOC去除才比较明显.最后,推导出4-OP直接光解的速率常数kd为0.0328 min-1,4-OP与H2O2反应的速率常数kpH为17.4520 L·(mol·min)-1.  相似文献   

9.
微波无极灯光解模拟CS2废气   总被引:3,自引:2,他引:1  
利用自行研制的微波无极灯对模拟二硫化碳废气进行光解.结果表明,微波无极灯光解CS2的效率随其初始浓度的增加而降低;停留时间是影响CS2转化率的重要因素;体系中水汽的增加有利于光解效率的提高.当管道气体流速为0.2 m/s,初始浓度约100 mg/m3,湿度约40%时,微波无极汞灯光解CS2的效率可达75%以上;微波无极碘灯对CS2的光解效率亦达到50%以上.同时探讨了CS2光解的反应机理,主要是紫外光直接光解和·OH自由基氧化的共同作用.  相似文献   

10.
为强化DBD(介质阻挡放电)技术对VOCs(挥发性有机物)的处理效果,采用溶胶凝胶法制备Bi2WO6/NH(NH为天然赤铁矿)复合催化剂,并利用DBD协同催化剂降解EA(ethyl acetate,乙酸乙酯).采用XRD(X射线衍射)仪、BET(比表面积及孔径)分析仪、SEM(扫描电子显微镜)分析仪对催化剂进行表征,对比分析DBD、DBD/Bi2WO6(DBD协同Bi2WO6)、DBD/NH(DBD协同NH)及DBD/Bi2WO6/NH(DBD协同Bi2WO6/NH复合催化剂)4个体系中EA去除率和能量产率随输入功率、初始ρ(EA)及气体停留时间的变化情况,同时探究输入功率和催化剂对ρ(O3)及矿化率的影响,并对降解产物进行分析.结果表明:①在不同工艺参数条件下,EA去除率和能量产率均表现为DBD/Bi2WO6/NH体系> DBD/NH体系> DBD/Bi2WO6体系> DBD体系.②EA去除率随输入功率的升高和气体停留时间的延长而增加,随初始ρ(EA)的升高而降低;但能量产率随输入功率的升高和气体停留时间的延长而降低,随初始ρ(EA)的升高而增加.③在输入功率为84 W、初始ρ(EA)为0.40 mg/L、气体流量为1.0 m3/h的条件下,相较于DBD体系,DBD/Bi2WO6/NH体系中EA去除率和矿化率分别提高了19.16%和14.44%,而ρ(O3)降低了74.47%.④DBD降解EA的最终产物主要为CO2、H2O及微量的CH4、CH3CH2OH及CH3COOH等小分子有机化合物.研究显示,DBD协同Bi2WO6/NH复合催化剂能够高效去除EA.   相似文献   

11.
采用电晕放电与液相络合催化协同同时去除烟气中SO2和NO,电压、水流量、乙二胺合钴浓度、pH、SO2和NO初始浓度以及气流量对同时去除SO2和NO效率的影响进行了实验研究.结果表明:NO去除率随着放电电压、水流量、乙二胺合钴浓度、pH的增加而增加,而随SO2和NO初始浓度、烟气流量的增大而减小;SO2去除率也随放电电压,水流量的增加而增加,随烟气流量的增加而下降,但溶液pH,SO2和NO初始浓度和乙二胺合钴浓度对其影响很小.溶液中加入Mn2+和尿素能分别增强SO2和NO的去除效果.最佳条件为:电压25 kV、水流量80 L·h-1,乙二胺合钴浓度0.02 mol·L-1,烟气流量1.0 m3·h-1、尿素浓度0.02 mol·L-1,Mn2+浓度为0.02 mol·L-1时,NO和SO2去除率分别可达68%和94%,对应能量消耗分别为22.2 g·k Wh-1和75.2 g·k Wh-1.  相似文献   

12.
采用低温等离子体-生物耦合系统降解氯苯和二氯乙烷混合气体,考察频率为10 000 Hz,能量密度(specific input energy,SIE)为6 111 J·L-1时进气浓度和气体流速对目标污染物降解的影响,并通过对产物与SIE之间关系以及生物滴滤塔中生物量和生物多样性的分析,更进一步揭示等离子-生物耦合系统的优势.结果表明,当SIE和气体流速一定时,增加初始浓度会降低混合气体的去除率;从经济效益考虑,气体流速宜采用0.71 L·min~(-1).经产物分析发现,在二氯乙烷和氯苯的浓度均为500 mg·m-3,气体流速为0.71 L·min~(-1)的条件下,二氧化碳的生成量以及选择性均随着SIE的增大而增大;在同样的条件下氯离子浓度随着SIE的增加而逐渐变大;生物滴滤塔中蛋白质含量随着反应器运行逐渐增加最后趋于稳定,下层的生物量高于上层;通过高通量测序分析,结果显示生物滴滤塔中的生物保有丰富的群落及物种多样性的特点.  相似文献   

13.
以氨水为吸收剂,对聚丙烯中空纤维膜分离烟气中CO2进行了实验研究.结果表明:随着气体流量和入口CO2浓度的增加,CO2去除率下降而传质速率增加;随着氨水浓度和氨水流量的增加,CO2去除率和传质速率均显著增加,但当氨水浓度大于2.5 mol·L-1,吸收液流量大于80m L·min-1后,膜接触器对CO2去除率和传质速率基本保持不变;膜接触器连续运行15 d后其吸收性能显著下降,CO2去除率、传质速率、总传质系数均下降约40%~50%.接触角测量、SEM及XPS表征结果表明:随着操作的进行,聚丙烯膜在吸收液环境中接触角逐渐降低,疏水性减弱,造成膜孔润湿;同时碳酸盐在膜孔形成结晶,堵塞膜孔,使得传质阻力进一步增加,从而造成膜接触器吸收性能的下降.  相似文献   

14.
为研究MFC(微生物燃料电池)产生电能活化PDS(过硫酸盐)对偶氮染料的降解能力,以MO(甲基橙)为目标污染物,探讨pH、c(PDS)、初始c(MO)、无机阴离子等对MO降解的影响及降解机理.结果表明:①当pH为3~5时,MO降解率随pH降低而升高;当pH低于3时,MO降解率随pH的降低而降低;MO降解率随初始c(MO)的增大而降低.当c(PDS)为1~2 mmol/L时,MO降解率随c(PDS)增加而增大;当c(PDS)超过2 mmol/L后呈减小趋势.②最佳反应条件[pH为3、初始c(MO)为0.10 mmol/L、c(PDS)为2 mmol/L]下,反应4 h后MO降解率可达86.5%.③无机阴离子HCO3-、NO3-、CO32-对MO降解存在抑制作用,当阴离子投加量为10 mmol/L时,降解率分别为64.2%、68.8%、76.1%,而Cl-对MO降解无显著影响.④淬灭试验表明,体系的主要活性物质为SO4-·及少量·OH.⑤通过紫外-可见光谱扫描,依据MO结构与特征吸收峰的关系,推测MO降解途径,即MO发色基团偶氮双键断裂,生成含苯环类中间产物,最终矿化为CO2和H2O.研究显示,MFC能有效活化PDS产生SO4-·,对偶氮染料有较好的降解和矿化效果.   相似文献   

15.
采用板-板式介质阻挡放电反应器对芥子气的模拟剂2-氯乙基乙基硫醚(2-Chloroethyl ethyl sulfide,2-CEES)进行洗消实验研究,并探讨了放电功率和气体流量对洗消率的影响.研究发现,在放电功率70W、气体流量75L·h-1的条件下对初始浓度0~280 mg·m-3的染毒空气洗消效果较好.因此,在该条件下,对芥子气染毒空气进行深入洗消研究.结果表明,当初始浓度低于150.2 mg·m-3时洗消后尾气的残余浓度低于安全允许浓度(0.0083mg·m-3).同时,采用GC-MS和离子色谱对洗消产物进行分析,发现介质阻挡放电等离子体将芥子气分解成H2O、CO2、SO3、HCl、芥子砜(ClCH2 CH2 SO2 CH2 CH2 Cl)和芥子亚砜(ClCH2 CH2 SOCH2 CH2Cl)等.  相似文献   

16.
气升装置对厌氧氨氧化反应器脱氮效能的影响   总被引:4,自引:4,他引:0  
李祥  张大林  黄勇  陈宗姮  袁怡 《环境科学》2014,35(9):3449-3454
通过接种厌氧氨氧化污泥研究了气升回流装置在提高进水基质浓度以提高反应器氮负荷过程中对反应器脱氮效能的影响.结果表明,在气升室中利用厌氧氨氧化反应产生的氮气作为动力可以实现出水自动循环.随着反应器脱氮效能的提高,气升室回流量也逐步增加,能够有效稀释进水基质浓度,缓解其对厌氧氨氧化菌的抑制.经过183 d运行,进水NH+4-N、NO-2-N质量浓度分别提高至700 mg·L-1和840 mg·L-1,出水NH+4-N和NO-2-N质量浓度最高达到46.3 mg·L-1和53.21mg·L-1,氮去除速率稳定在28.3 kg·(m3·d)-1左右.说明气升装置所形成的自回流系统能够有效改善传统厌氧氨氧化反应器运行过程中高基质浓度抑制的问题,同时减少外置回流泵的动力消耗,是一种经济有效的措施.  相似文献   

17.
微波紫外无极碘灯降解硫化氢气体   总被引:4,自引:0,他引:4  
采用微波激发方式使无极碘灯发生放电,产生207 nm紫外辐射,并用于降解H2S气体.考察了初始ρ(H2S)、停留时间和微波电源功率等因素对H2S降解的影响.结果表明:H2S在微波无极碘灯停留时间为1.75 s时,其降解率随初始ρ(H2S)的升高而降低.初始ρ(H2S)为57.5 mg/m3时,H2S降解率为20.5%;初始ρ(H2S)为7.3 mg/m3时,H2S降解率可达到64.2%.在保持初始ρ(H2S)及停留时间不变的情况下,H2S降解率随电源功率的增加而提高.H2S经微波碘灯光解后的最终产物含有SO42-.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号