首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
应用IVE模型计算上海市机动车污染物排放   总被引:30,自引:7,他引:30  
为了解上海市机动车污染现状,建立上海市机动车源排放清单,分别选择上海市中心城区、商业区和收入相对较低区域中的主干道、快速道和次干道3种共9条典型道路,开展机动车技术水平参数、比功率(VSP)分布状况、启动状况等测试,并在此基础上将International Vehicle E-mission(IVE)模型本地化.调查结果表明,上海市区实际道路上轻型客车、出租车、公交巴士、卡车和摩托车(包含助动车)分别占道路总车流量的41.0%、30.8%、15.6%、6.9%和5.7%;从技术组成看,约85%的轻型客车和97%的出租车均安装有三元催化装置,约30%的公交巴士和90%的卡车没有达到欧Ⅰ标准;机动车的VSP分布主要集中在-2.9~1.2 kw·t-1.模式计算结果表明,2004年上海市机动车CO、VOC、NOx和PM排放量分别为57.06×104t、7.75×104t、9.20×104t和0.26×104t;20%的高排放车对总排放量的贡献占到25%~45%;启动过程中排放的CO、VOC和PM占总排放量的15%~25%,NOx仅占总排放量的4.5%.  相似文献   

2.
杭州市区机动车污染物排放特征及分担率   总被引:1,自引:0,他引:1       下载免费PDF全文
选取杭州市区绕城高速、快速路、主干道和民用支路4种典型道路进行工况测试,建立了2010年机动车CO、HC、NOx和PM10排放清单,获得了分车型、燃料类型、排放标准以及道路类型的机动车污染物排放分担率.结果表明,杭州市机动车的污染物排放分担率差别显著,乘用车、出租车和公交车是CO和HC排放的主要来源,重型货车和公交车是NOx和PM10排放的主要来源,且乘用车的NOx排放分担率也较大;柴油车的NOx和PM10的排放分担率远大于其保有量的贡献率,是其排放的主要来源,汽油车是CO和HC排放的主要来源;占保有量30%的国0和国I车辆,对CO、HC、NOx和PM10排放分担率分别为67%、69%、58%和82%;主干道是机动车CO、HC和NOx排放的主要来源,其排放分担率分别为66%、65%和64%,民用支路是PM10排放的主要来源,分担率为55%.  相似文献   

3.
乌鲁木齐市区机动车污染物排放特征研究   总被引:1,自引:0,他引:1  
何丽  朱建雯  钱翌 《环境工程》2015,33(5):90-94
选择乌鲁木齐市125条道路调研测试得来的数据分析了乌鲁木齐市在用机动车的行驶分布的规律、污染物的排放特点和机动车道路的行驶特点。然后使用COPERT本地化模型计算CO、NMVOC、NOx和PM的排放因子,并计算了2012年CO、NMVOC、NOx和PM的排放量。通过估算得到2012年乌鲁木齐市机动车CO、NMVOC、NOx和PM的排放量分别为94 087,17 886,25 079,1 489 t。柴油机动车对NOx、PM的排放分担比率较大,而柴油机动车的保有量的贡献比率偏低;柴油汽车的CO、NMVOC的保有量的贡献比率跟它的排放分担率相比,贡献率要大;占保有量22.3%的国Ⅰ、国Ⅰ前标准的机动车辆对机动车CO、NMVOC、NOx、PM的排放分担比率分别为50.5%、41.0%、51.5%和55.0%;占保有量64.3%的国Ⅲ、和国Ⅳ车辆对CO、NMVOC、NOx和PM的贡献率分别为35.2%、42.7%、35.6%和33.9%。  相似文献   

4.
文章建立了珠三角地区2012年10种污染物的机动车排放清单,并分不同车辆类型、不同排放标准以及不同城市分析了各污染物排放特征。结果表明:(1)不同车型的机动车排放贡献率存在着一定的差异,其中轻型客车、摩托车和大型客车所占排放比例较高;(2)CO、VOC、CH4、NMVOC主要来源于轻型客车和摩托车,NOx、PM2.5、EC、OM主要来源于大型客车,NH3主要来源于轻型客车,SO2主要来源于大型客车和轻型客车;(3)国0和国Ⅰ标准机动车是主要排放贡献源;(4)广州、深圳排放量所占珠三角整体排放量比重较大,其次为佛山、东莞、江门,珠海、中山、肇庆、惠州所占排放比例较小。  相似文献   

5.
广州市机动车尾气排放特征研究   总被引:3,自引:1,他引:2  
文章利用COPERT IV模型计算广州市机动车尾气排放因子,结合机动车保有量和构成,获得2008年广州市机动车尾气排放总量并对排放因子的速度敏感性,以及不同车型、不同排放标准、不同燃料类型机动车排放特征进行了分析。结果表明:2008年广州市机动车CO、NOX、VOC和PM的排放总量分别为138 772.42 t、80 868.69 t、24 907.26 t和3 171.97 t。摩托车和小客车是CO和VOC的主要贡献车型,贡献率总和分别达到78.31%和70.52%;而作为NOX和PM的主要贡献车型,大客车和重型货车的贡献率总和分别达到78.94%和83.72%。国0标准机动车排放水平高于其他排放标准的车型,CO和VOC的排放分担率接近于保有量比例的2倍。汽油车是CO和VOC的主要贡献车型,其排放贡献率超过80%;而PM排放主要以柴油车为主;柴油车的NOX排放总量高,接近于汽油车的2倍。  相似文献   

6.
为改善2010年亚运会期间空气质量,佛山市对中心城区内部分道路进行试限行.采用欧洲COPERT模式,计算出不同排放标准、不同车速、不同车型下的机动车排放因子,通过交通流调查,获取限行前后典型道路交通流运行状态,并以此为依据评估限行后区内机动车污染减排效果.结果表明,限行期间,主要路段道路交通流量平均下降32.5%,车型比例变化较大,摩托车流量下降显著.各种污染物降幅比例并不一致.按照此流量降幅可以预计,如在区内全面展开机动车限行,单位路段污染物(CO、NOx、VOC、PM)年排放量分别下降48.1%、39.2%、43.6%、49.2%.  相似文献   

7.
杭州市机动车NO_x排放清单的建立及其对空气质量的影响   总被引:6,自引:3,他引:3  
以杭州市主城区为例,对车辆信息(包括车流量和车辆构成、车辆控制技术水平、车辆行驶工况、车辆启动分布等)进行了调研和测试,并根据IVE模型计算了机动车NOx的排放清单.结果表明,2004年杭州市主城区机动车NOx排放总量为25 100 t,其中,轻型客车、出租车、公交车、重型货车和轻型货车的年排放量分别为5 800,1 100,7 300,9 200和1 700 t.在此基础上,通过AERMOD模型模拟了城市机动车源NOx年均质量浓度以及城市空气中总的NOx年均质量浓度空间分布,得出机动车排放的NOx对总的NOx年均质量浓度的贡献率为40.91%,并对贡献率的空间分布进行了分析.  相似文献   

8.
北京机动车尾气排放特征研究   总被引:7,自引:0,他引:7  
近年来随着机动车保有量的快速增加,北京市机动车排放污染受到越来越多的关注。本研究应用COPERTⅣ模型计算了北京不同类型机动车排放因子,根据保有量和年均行驶里程等基础数据计算了2009年机动车尾气污染物排放量;调查了北京典型道路车流量和车辆运行速度等参数,计算机动车尾气排放强度,得出了典型道路不同污染物的综合排放因子;应用COPERTⅣ模型分析了车速对不同污染物排放的影响,将基于G IS的机动车活动强度、行驶速度和排放因子结合在一起,得到了北京机动车尾气排放网格分布清单。结果表明:CO排放量为71.58×104t,HC排放量为7.95×104t,NOx排放量为8.77×104t,PM排放量为0.38×104t。北京城区高峰小时CO排放量为143.9 t/h,HC排放量为18.6 t/h,NOx排放量为12.5/h,PM10排放量为1.14 t/h。  相似文献   

9.
杭州市机动车污染物排放清单的建立   总被引:8,自引:0,他引:8       下载免费PDF全文
基于调研的基础数据,运用修正后的IVE排放模型及GIS系统建立了杭州市2010年1km×1km的高时空分辨率的机动车排放清单.结果表明,2010年杭州市机动车污染物CO、HC、NOx、PM的年排放量分别为44.06,2.31,4.43,0.65万t,主要来自线源道路的排放.各车型污染物分担率各不相同,汽油乘用车和公交车排放CO和HC最大,柴油重型货车和公交车是NOx和PM排放的主要来源,两种燃油下的机动车排放差异十分明显.机动车污染排放与路网密集程度及道路长度密切相关,因此西湖区和江干区排放总量远远高出其他区域.机动车各污染物排放强度空间分布均呈现由城市中心向城市边缘的递减趋势,各污染物中心城区排放量占总排量的70%以上.机动车污染物排放日变化十分明显,与人群出行规律有极大的相关性.  相似文献   

10.
基于实时交通数据的南京市主次干道机动车排放特征分析   总被引:5,自引:3,他引:2  
李笑语  吴琳  邹超  张意  毛洪钧  荆博宇 《环境科学》2017,38(4):1340-1347
通过2014年RFID实时数据得到南京市主干道和次干道车流量、车速、车队构成等交通信息,基于COPERT模型获取排放因子数据,利用高时空分辨率机动车排放(HTSVE)清单系统计算道路机动车排放量.运用非参数检验和道路聚类分析,结合Arc GIS技术,分析南京市主次干道机动车排放特征.结果表明,2014年南京市主次干道机动车以小型客车为主,比例均达80%,国Ⅲ和国Ⅳ车量总数超过90%,其中以国Ⅲ车排放贡献率最大.特殊时段(低谷时段、平峰时段、高峰时段)机动车日均排放量受道路类型和周末效应共同影响,南京市主次干道以排放分担率变化规律可分为5类,同类道路具有相似的变化特征且受空间地理位置影响.基于聚类结果,对不同类型道路的小时排放特征进行分析,以期为交通环境管理提供技术手段和决策依据.  相似文献   

11.
基于实际道路交通流信息的北京市机动车排放特征   总被引:12,自引:7,他引:5  
樊守彬  田灵娣  张东旭  曲松 《环境科学》2015,36(8):2750-2757
通过模型模拟和调查统计方法获取了北京路网的车流量、车型构成和车速基础数据.基于具有时空分布特征的实际道路交通流信息和排放因子,以Arc GIS为平台构建了北京市机动车尾气排放清单,并分析实际道路排放特征及污染物排放的空间分布特征.结果表明,北京市城区各类型道路上小客车比例均在89%以上,郊区道路也为小客车比例最高,但小货车、中货车、大货车、大客车、拖拉机和摩托车均占一定比例.污染物排放强度与车流量呈正相关性,污染物排放强度总体上呈现白天高夜间底的趋势,但是郊区道路PM排放昼夜变化趋势不明显,高速路的PM排放强度夜间大于白天.污染物排放的空间分布为城区、南部、东南以及东北部接近城区的区域排放强度较高,西部山区及北部山区由于路网密度较小排放强度较低,城区环路和郊区高速公路附近由于车流量大,排放强度较高.  相似文献   

12.
采用COPERTⅣ模型计算佛山市公交车、摩托车和小型客车排放因子,结合保有量、年平均行驶里程计算其排放量,对佛山市公交车出行环境效果及尾气削减潜力进行情景分析。结果表明:2011年佛山市公交车CO、VOC、NOx和PM的排放量为804.57、283.85、3 365.32和73.00 t。单人单次公交车出行CO和VOC的排放量较摩托车和小型客车低,但NOx则较高。公交车载客人数从17人上升至25、35、45人,单人单次出行每公里排放量分别下降32.00%、51.43%和57.50%。佛山市低排放标准的柴油公交车全部更换成国Ⅳ排放标准柴油车,CO、VOC、NOx和PM的年排放量分别削减611.66、151.6、1 231.18和58.39 t。EEV标准天然气公交车替代柴油公交车可减少NOx和PM的排放,但对VOC的削减并无优势。佛山市现有柴油公交车更换成EEV标准天然气公交车,CO、NOx和PM的年排放量分别削减293.71 t、2 086.87 t和70.34 t,但VOC的年排放量升高228.01 t。  相似文献   

13.
河南省2016~2019年机动车大气污染物排放清单及特征   总被引:4,自引:4,他引:0  
基于城市机动车保有量和高速公路交通流量,结合行驶里程和VOCs源谱,采用排放因子法建立了河南省2016~2019年城市和2016年高速公路机动车高分辨率大气污染物排放清单.结果表明,2016年小型客车和普通摩托车等汽油车是CO、VOCs和NH3的主要贡献源,SO2、NOx和PM主要来自重型和轻型柴油货车,国1、国3和国4标准车对污染物排放贡献突出,郑州、周口和南阳的排放量较大;高速公路8~10月的车流量较高,11月最低,城市主干道周变化和日变化分别呈现出明显的周末效应和双峰特征;排放高值区集中在交通网密集、交通流量大的城市中心及市区附近向外辐射的道路上,连霍高速和京港澳高速是高排放道路;轻型汽油车对臭氧生成潜势(OFP)贡献最大,乙烯和丙烯等5个物种对VOCs排放量和OFP贡献均较大;2016~2019年机动车保有量年均增长率为5.7%;与2016年相比,2019年VOCs排放增加2.8%,SO2、PM2.5、PM10、NH3、CO和NOx的降幅分别为76.3%、51.7%、50.3%、43.1%、16.7%和5.9%;2019年各污染物在控制政策下的实际排放量相对基准情景的减排比例在15.6%~82.4%之间.  相似文献   

14.
为探讨交通状态对道路轻型车运行工况和尾气排放的影响,收集广州市珠江新城路网中出租车、轻型货车的浮动车数据并计算轻型车的运行工况参数,结合MOVES模型(Motor Vehicle Emission Simulator)和交通流量数据仿真计算轻型车的尾气排放量,分析畅通、拥堵、严重拥堵3种交通状态下轻型车的运行工况、排放速率、尾气排放量的变化与差异. 结果表明:在相同道路类型、不同交通状态下,轻型车的运行工况差异较大,其中拥堵和严重拥堵状态下运行模式分布主要集中于怠速、低速运行模式;在相同交通状态下,主干路的运行工况优于次干路,其怠速运行模式所占比例较次干路低15%~20%;畅通状态下,主、次干路轻型车HC、NOx、CO平均单车排放速率分别为2.00、1.87,2.57、2.47,42.59、37.51 mg/s,分别约为拥堵状态下的1.17、1.27、1.35倍,约为严重拥堵状态下的1.30、1.39、1.70倍,而主、次干路PM2.5平均单车排放速率在3种交通状态下均接近,范围在0.050~0.056 mg/s之间;轻型车在严重拥堵状态下单位时间的污染物排放量最高,是畅通状态下的2.22~3.87倍. 研究显示,交通状态是影响轻型车动态排放速率及道路总排放的重要因素.   相似文献   

15.
研究了夏季杭州市主要类型道路(隧道、快速道路、主干道和支路)空气中挥发性有机物的污染特征,以及2010年11月—2011年7月间快速道路空气中VOC的季节变化规律.分析结果表明,杭州市道路空气中VOC浓度显著大于风景区内VOC浓度,隧道浓度最高(828.4μg·m-3),其它道路空气中VOC浓度随着车流量减少而降低.源解析结果发现道路空气中VOC的主要贡献者为机动车排放,但同时也受到溶剂挥发、煤或生物质燃烧的影响,风景区内VOC则受煤或生物质燃料燃烧的影响更大.快速道路空气中VOC浓度和反应活性由机动车排放、植物排放和气象条件共同决定,呈现夏〉秋〉冬〉春的季节变化特征.机动车排放的烯烃和芳香烃是道路空气中主导的活性VOC物种,说明机动车排放是杭州市大气反应活性的最大贡献者.此外,在夏、秋季节,植被排放的异戊二烯显著的增强了道路空气中VOC的反应活性.  相似文献   

16.
高时空辨识度的车流时空分布特征是研究区域机动车排放的重要基础,通过射频识别技术和车辆注册登记数据获得重庆市二环区域每10 min的车流量以及车辆技术特征信息,对比分析内环以内及以外区域的分车型、分道路类型、分排放标准和燃料类型的车流量时空变化特征.结果表明:①重庆市内环以内区域日均流量为1.8×104辆,约为内环以外区域的1.8倍.②内环以内区域小型客车、公交车、出租车的日均流量分别为内环以外区域的1.7、2.1和2.5倍,而重型货车的日均流量为内环以外区域的54.8%.③ 2个区域车辆的主要燃料类型为汽油、天然气、柴油、新能源,占比分别为71.7%~73.7%、15.1%~21.4%、5.5%~9.6%、1.3%~1.5%.④ 2个区域车辆的排放标准分布基本一致,主要排放标准为国Ⅳ(约占76.5%),国Ⅴ约占11.4%,国Ⅲ约占9.0%,国Ⅱ、国Ⅰ和国Ⅰ前的占比之和约为3.1%.⑤ 2个区域的小时总流量变化特征呈“M”型分布,早高峰时段为08:00—10:00,晚高峰时段为16:00—18:00.⑥ 2个区域小型客车、公交车的小时流量变化特征均与总流量变化特征基本一致,但出租车、轻型货车和重型货车在08:00仍保持明显的上升趋势,直到14:00才缓慢下降.⑦内环以内区域高速路、快速路、县道的高峰时段流量明显较高,分别为内环以外区域的5.5、2.5、6.2倍;而内环以外区域国道的高峰时段流量相对较高,约为内环以内区域的1.8倍.研究显示,重庆市二环内外区域的车流量和车辆技术特征信息的时空分布存在较大差异,建议完善城市实际道路车流的时空监测网络,为机动车排放清单的编制提供更好的数据支撑.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号