首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
龙景湖位于重庆市北部新区园博园内,以自然降水为补给水源,在构建园博园景观、调节湖区小气候、改善周围生态环境、提供居民休闲等方面具有重要功能。为了及时掌握龙景湖水质变化情况,对水体中TN、TP、CODMn、Chla含量及水体透明度等进行监测分析,运用综合营养状态指数法对龙景湖营养状态进行评价。研究表明:龙景湖水体中TN、TP含量超标污染严重,Chla含量亦较高,其他指标处于正常景观用水范围内,水质总体处于轻度-中度富营养化范围。秋亭桥是全湖水质最差的地方。相关分析表明综合营养状态指数与透明度呈极显著负相关关系,与pH、溶解氧、CODMn、BOD5、Chla呈极显著正相关关系。开展监测以来,龙景湖水质明显恶化,治理工作刻不容缓,应从入湖污染源控制、湖水污染治理及管理工作三方面着手,采取综合治理措施。  相似文献   

2.
湖库富营养化指标的高频监测方法研究   总被引:2,自引:0,他引:2  
湖泊和水库中蓝藻水华等富营养化灾害的形成往往只需几天的时间,因此,在富营养化水体的水质管理上需要进行高频的水质指标监测.本研究以新安江水库(千岛湖)为例,基于水质传感器探头现场获取的水质参数,采用多元逐步回归分析方法,获得总氮(TN)、总磷(TP)、高锰酸盐指数(CODMn)、叶绿素a(Chl)、营养状态指数(TSI)、透明度(SD)等指示湖库富营养化状况的关键水质指标与水体藻蓝素(PC)、浊度(TURB)、有色可溶性有机物(CDOM)、电导率(EC)、溶解氧(DO)等现场水质参数之间的定量关系,以满足高频监测湖泊富营养化关键指标的需要.结果表明,2013年调查期间,新安江水库各湖区水质差异较大,调查的54个点位中,SD介于1.10~8.60 m之间,TN介于0.78~1.68mg·L-1之间,TP介于7.90~71.1μg·L-1之间,具有较为宽泛的代表性.相关分析表明,CDOM与TN、TP、CODMn、Chl、TSI、SD均存在显著的相关关系,可以作为新安江水库水质富营养化状况的一个重要自动监测指标;TURB与TP、Chl、SD、TSI之间也显著相关,PC则与TN、CODMn相关,而探头获得的叶绿素浓度值(Chls)与TN、SD显著负相关.通过与实测值比较表明,统计分析建立的富营养化指标多元回归方程估算值与实测值吻合度较高,能够满足水体管理的需要.本研究为湖泊和水库的富营养化灾害监控、预警提供了理论依据.  相似文献   

3.
巢湖富营养化年度尺度变化分析及对策   总被引:6,自引:0,他引:6  
针对巢湖流域富营养化问题,以主要指标总氮、总磷等比较了东半湖和西半湖主要水质指标的差异,并以水质指标数据为基础计算了2000-2007年富营养化综合指数.结果显示:2000-2007年巢湖富营养化总体上呈减轻趋势,东半湖处于轻度富营养化状态,西半湖处于中度富营养化状态,西半湖仍需加强对CODMn和TP的污染控制,治理重点是叶绿素和TP浓度.  相似文献   

4.
通过对太湖梅梁湾湖区充山、小湾里十年(1995-2005年)的水质调查以及多年的逐月平均变化分析,结果表明:两取水口浊度呈逐年下降趋势;CODMn略有下降,但超过地表水Ⅲ类标准;NH3-N、TN远远超过了地表水Ⅴ类水体标准;TP达到劣Ⅴ类水体,并有逐年加重的趋势;藻类密度呈逐年下降趋势,在两处取水口均检测到微囊藻毒素;充山取水口水质劣于小湾里.  相似文献   

5.
通过对2014年2月(枯水期)和10月(丰水期)玉溪大河(曲江-红塔区段)河道水体中总磷(TP)、总氮(TN)、氨氮(NH_3-N)、化学需氧量(COD)、生化需氧量(BOD_5)含量的分析,并运用综合营养指数法对水体富营养化级别进行评价,试图阐明玉溪大河城市河道水体富营养化指标的时空动态规律。研究结果表明:玉溪大河河道水体已处于严重的富营养化状态,属Ⅴ类或劣Ⅴ类水;TP、TN、COD、NH_3-N和BOD_5具有明显的季节性差异,且枯水期高于丰水期;水质沿程的总体变化趋势为先升高后降低。研究认为,玉溪大河污染主要来源于农业污水、生活污水、工业污水、雨水径流、管道及下渗污水。  相似文献   

6.
基于可变模糊数学模型的大河口水库富营养化评价   总被引:3,自引:3,他引:0  
为科学客观准确地评价大河口水库水体富营养化程度,于2014年1月至2015年11月对大河口水库布设的18个水质监测点位进行了23个月的水质分析检测工作,并选取COD、Chl-a、TP、TN共4项水质指标,运用模糊可变集理论和方法,构建了用于水体富营养化评价的模糊可变模型,结合等权法、熵值法和单纯阈值法3种主客观赋权法,对大河口水库进行富营养化评价。结果表明:可变模糊数学评价模型应用于水库水体富营养化评价具有合理性和客观性,3种权重下取得评价结果一致,大河口水库各监测点水质呈现富营养化状态,B_1、B_2和L监测点水质属于重富营养化状态。  相似文献   

7.
顾丹提 《环境科技》1995,8(1):15-16,39
太湖水源是整个太湖流域地区国计民生的命脉,近十年来,由于经济迅速发展,城市化进程加快,太湖生态环境问题日渐突出。太湖水质恶化,10年内下降了一个等级。目前太湖水质平均已接近三类水,近30%的水面为四类水,其中五类水面占全彻的15%,大部分入湖河道劣于五类水;太湖水体中藻类数量增长了5倍,2/3的湖面呈中富至富营养化过渡状态,1/3的湖面为中富营养化状态。太湖及其流域的主要污染来源是:(l)农业和生活污水大量增加。每年200至30O万吨化肥、5至8万吨农药中的70%未分解排入水体24000万人口的生活污水和粪便未经处理流入…  相似文献   

8.
煤矿塌陷湿地水体富营养化评价   总被引:1,自引:0,他引:1  
以徐州某矿塌陷湿地为研究对象,通过对该矿塌陷湿地水体水质监测数据的分析,采用综合营养状态指数法(TLI)对该塌陷湿地水体的富营养化水平进行了评价。研究结果表明:①该矿塌陷湿地水体水质总体优于GB3838-2002Ⅳ类标准,TN和TP的平均含量分别为0.31mg/L和0.024mg/L,可达到Ⅱ类标准;②整个塌陷湿地水体的综合营养状态指数TLI为47.46,处于中营养状态,有向富营养化状态变化的趋势;③在水质监测数据的基础上,分析了水体营养状态变化的原因,并提出了针对该矿塌陷湿地水体的富营养化控制措施和建议。  相似文献   

9.
以徐州某矿塌陷湿地为研究对象,通过对该矿塌陷湿地水体水质监测数据的分析,采用综合营养状态指数法(TLI)对该塌陷湿地水体的富营养化水平进行了评价。研究结果表明:①该矿塌陷湿地水体水质总体优于GB3838-2002Ⅳ类标准,TN和TP的平均含量分别为0.31 mg/L和0.024 mg/L,可达到Ⅱ类标准;②整个塌陷湿地水体的综合营养状态指数TLI为47.46,处于中营养状态,有向富营养化状态变化的趋势;③在水质监测数据的基础上,分析了水体营养状态变化的原因,并提出了针对该矿塌陷湿地水体的富营养化控制措施和建议。  相似文献   

10.
海河流域河流富营养化程度总体评估   总被引:10,自引:2,他引:8  
张洪  林超  雷沛  单保庆  赵钰 《环境科学学报》2015,35(8):2336-2344
以海河流域2009年地表水水质现状数据为基础,分别运用河流水体富营养化潜势和浮游植物表征河流富营养化水平.结果显示,流域河流水体中富营养盐含量相对较高,河流水体中TN、NH3-N平均含量分别为8.13、4.34 mg·L-1,分别超过《地表水环境质量标准》(GB3838—2002)Ⅴ类限值(2 mg·L-1)4倍、2倍以上.北三河水系(北运河、潮白河、蓟运河)、子牙河水系和海河干流中TN浓度超过9 mg·L-1;海河流域河流水体中TP平均含量为0.87 mg·L-1,超过地表水Ⅴ类限值(0.4 mg·L-1)2倍以上.北三河水系、子牙河水系和黑龙港运东水系水中TP平均含量均超过1.0 mg·L-1.主要河流3%处于中或贫营养,44%处于极富营养化水平,主要分布在北三河水系、子牙河水系和漳卫河水系,表明流域河流总体呈现富营养化状态,平原段河流富营养化严重.河流治理要兼顾耗氧污染控制和营养盐控制,以改善河流水质.  相似文献   

11.
运用计算实验方法,以计算机为工具,构造太湖水环境系统承载力模型,通过研究水和人类的各主体行为得出太湖水环境系统的整体特征,并通过人口、TP、TN、CODMn承载度来反映。研究结果表明太湖目前点源污染得到了有效控制,但面源污染和城镇生活用水污染尚需要重点治理。实验显示:通过系统参数的调整,将大大改善太湖现有水环境系统。  相似文献   

12.
先后于冬季(2003年1月)和夏季(2003年7月)对太湖水体溶解营养盐的组成进行了调查,分析了营养盐在湖水中的分布规律,初步探讨了太湖浮游植物营养盐限制因子的季节变化特征。结果显示:太湖溶解无机氮、磷、硅夏季比冬季略高一点,主要来自流域外源输入和湖泊内源释放,分布趋势受人为活动大小和湖泊自身特点的影响。  相似文献   

13.
我国东部大型浅水湖泊太湖的富营养化和藻华暴发一直是困扰该地区社会经济高质量发展的重要水问题之一,其中水资源分配不均及部分营养盐浓度较高,严重制约了太湖水体生态环境的健康发展。基于1999-2019年太湖水质、气象等逐月观测资料,构建了基于协变量(TN、TP、CODMn、降水量和引排水量)的叶绿素a(Chl-a)预测模型ARIMA(1, 1, 1)(0, 1, 1)12,并结合2007-2019年历史引排水方案经验和效果,提出了未来平水年情景下降低太湖藻华大面积暴发风险的引排水方案优化策略。结果表明:所构建的ARIMA(1, 1, 1)(0, 1, 1)12模型能有效预测太湖水体Chl-a浓度;且在预设未来情景下,通过同步增加引、排水量可有效降低水体营养盐含量。引排水方案的优化关键在于季节性水资源的合理调配,在满足水安全的基础上适当加大冬春季节引排水,可达到改善水动力和排出营养盐的效果。  相似文献   

14.
长荡湖水环境现状及控制措施   总被引:6,自引:0,他引:6  
长荡湖为太湖流域一过水型、浅水草型湖泊 ,受过水水质和湖内水产业的过度开发 ,造成湖水质量逐年下降 ,湖水质量已处于Ⅴ类和富营养状态。针对存在的问题 ,提出了控制建议  相似文献   

15.
为研究克鲁伦河污染物输送对呼伦湖水质的影响,以克鲁伦河水体为研究对象,对水中氨氮、总氮、总磷及化学需氧量(COD)进行监测,分析了其水质变化的主要原因并研究了各指标之间的相关性,利用水污染指数法确定了水体中主要的污染因子。结果表明:克鲁伦河所有监测断面的水质等级均为劣V类,主要污染物为总氮及化学需氧量。水体中氨氮和总氮的相关系数为0.850,呈极显著的正相关关系,化学需氧量与总磷之间的相关系数为0.691,呈显著的正相关关系。氮磷及有机物的不断输入加重了呼伦湖水体的富营养化程度。  相似文献   

16.
马秋霞  逄勇  张鹏程 《环境工程》2022,40(6):280-285
曼宁系数是在水流计算和实际工程中应用最广泛的水流阻力系数,是河湖阻力研究中的重要方向。基于室内循环水槽,利用三维声学多普勒流速仪,研究了不同沉水植株密度和水体流速下曼宁系数的变化特性。根据摩阻力相似原理、实际曼宁系数和试验曼宁系数换算公式,计算得到不同工况下的太湖曼宁系数;并通过回归拟合,得到太湖曼宁系数与植株密度、株高和水体流速的最优拟合方程式。结果表明:当湖底植株状况一定时,太湖曼宁系数与水体流速呈明显的单调递减幂函数关系;当植株密度 ≤ 200株/m2,水体流速和株高一定时,太湖曼宁系数与植株密度呈单调递增关系;当水体流速与植株密度一定时,太湖曼宁系数与植株株高呈单调递增关系。通过试验模拟得到太湖实际曼宁系数,对沉积物-水界面氮磷营养盐的迁移转化研究、富营养改善及湖泊长效管理具有重要意义。  相似文献   

17.
张波  赵中华  申秋实  张路 《环境工程》2020,38(6):121-125
为探究北太湖固氮作用,使用乙炔还原法对其水体的原位固氮作用和室内的N、Fe和Mo对鱼腥藻固氮速率的影响进行研究。结果发现:北太湖的年均固氮速率为3.08 ng/(L·h),并表现出明显的时空变化特征,梅梁湾水区的速率最高(2.75 ng/(L·h)),湖心区速率最低(1.38 ng/(L·h));固氮速率在夏季最高[6.03 ng/(L·h)],春[1.08 ng/(L·h)]、秋[0.81 ng/(L·h)]次之,冬季最低[6.97×10-5 ng/(L·h)]。进行相关分析发现:鱼腥藻的生长不受N、Fe和Mo影响(P>0.05);但N是控制鱼腥藻固氮速率的主要因素(P<0.01),而Fe和Mo含量对鱼腥藻的固氮作用并不产生显著影响(P>0.05)。北太湖水体的原位水温(P<0.01)、DTN(P<0.01)、蓝藻生物量和NO3-(P<0.05)是导致水体原位固氮速率时空差异的主要原因。  相似文献   

18.
达赉湖水质状况及影响因素分析   总被引:6,自引:0,他引:6  
达赉湖位于呼伦贝尔市内,属额尔古纳水系。根据呼伦贝尔市环境监测站对达赉湖多年水质监测结果和达赉湖国家自然保护区管理局关于达赉湖水文水情监测报告显示:2004~2007年,达赉湖为劣Ⅴ类水质,重度污染,水质无明显变化。由于受高纬度及近年来连续干旱、湖泊周边放牧、地表径流的影响,达赉湖水体呈现盐碱化和富营养化,而且进程在加速。  相似文献   

19.
水生高等植物对太湖重金属的监测及其评价   总被引:19,自引:2,他引:19  
本文用化学分析方法研究了太湖水生高等植物对重金属的吸收积累特性,并用污染度P=(x-x)/x来评价太湖重金属的污染程度.其结论为:1)植物体中的重金属含量在污染区的高于非污染区;2)河口区植物体中的含量高于其它湖区;3)自然湖泊底质中重金属含量高则植物体中的重金属含量也高.这说明水生高等植物具有对湖泊重金属的监测能力.其评价为:太湖目前的环境质量较好,但存在1%面积的局部污染.  相似文献   

20.
东湖水污染经济损失研究   总被引:44,自引:2,他引:44       下载免费PDF全文
建立了多种污染物并存时湖泊水污染经济损失与湖泊水质之间的关系模型.通过东湖水污染经济损失的实例分析,为东湖饮水、养殖能否兼顾;污养、污灌是否利大于弊等问题的决策提供了科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号