首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
为了探究边界层气象要素时空分布及其变化对银川市冬季持续污染天气过程污染物质量浓度变化的影响机制,利用2016年12月1日-2017年1月31日逐时空气质量以及地面和逐日定时探空气象观测数据,根据大气污染级别和过程持续时间,选取2016年12月9-21日(简称"1211过程")和2016年12月29日-2017年1月9日(简称"1231过程")为研究对象,采用统计和天气诊断相结合的方法,在分析比较银川市冬季两次典型持续污染过程演变特征及其与地面气象要素关系的基础上,探讨了大气环流、边界层要素变化对银川市冬季典型污染过程的可能影响机制.结果表明:①银川市冬季两次大气污染过程持续阶段,地面均以偏东或偏南风为主,风速较小,相对湿度较大,能见度较低;在污染清除阶段,地面风向转为西北或偏北风,风速较大,相对湿度较小,能见度较高.②当冬季欧亚大陆中纬度区域500 hPa高空盛行纬向气流,850 hPa高度上银川市受反气旋环流和暖温度脊控制,并且有弱暖平流从西南部向北输送时,银川市易出现静稳型持续污染天气.③冬季银川市持续大气污染过程中,ρ(PM2.5)与风速呈负相关(R平均值为-0.326),与相对湿度呈正相关(R平均值为0.688),与能见度呈显著负相关(R平均值为-0.905),与边界层高度呈较显著负相关(R平均值为-0.575).④银川市冬季静稳型持续污染天气主要分为弱西北和平直西风气流型两种,弱西北气流型具有近地面层逆温弱,污染物积累慢,清除快的特征;平直西风气流型具有近地面层逆温强,污染物积累快,清除慢的特征.研究显示,冬季银川市上空500 hPa高度盛行纬向气流,地面主导风向为偏东或偏南风时,随着地面相对湿度增大、近地层风速减小、大气垂直上升运动减弱、边界层高度降低,大气中ρ(PM2.5)将迅速升高,银川市易出现以PM2.5为首要污染物的静稳型持续污染天气.   相似文献   

2.
基于无人机探空和数值模拟天津一次重污染过程分析   总被引:4,自引:4,他引:0  
污染发生在边界层中,边界层热力和动力垂直结构对重污染天气形成有显著影响.本文基于无人机探空、地基遥感观测和数值模式,开展天津地区2019年1月10~15日重污染过程期间边界层垂直结构及污染成因分析,以期加强北方沿海城市边界层过程对重污染影响规律认知,提升重污染天气预报预警准确率.结果表明:大气温度层结对重污染天气形成、持续和消散有显著影响,此次过程伴随逆温层的发展和消散,PM2.5高浓度区白天向大气上层发展,高度可达300 m以上,夜间向近地面压缩,高度在100 m左右;雾天气出现并在白天维持,改变了边界层垂直结构特征,雾顶逆温的持续存在抑制了污染物向大气上层扩散,使得白天湍流垂直混合过程贡献明显下降,导致近地面重污染天气维持和发展;过程期间区域输送贡献率为66.6%,边界层垂直结构与重污染天气区域输送密切相关,区域污染物输送高度主要出现在边界层顶部以及雾顶逆温层以上的大风速层处,且随着边界层和雾顶抬升高度的变化,通过下沉运动影响地面,形成北部弱高压天气控制下静稳天气区域输送;边界层垂直结构影响冷空气对空气质量的改善效果,S3阶段雾顶的强逆温导致冷空气无法通过湍流切应力传导到地面,在高低空存在明显的风速差,冷空气影响地面时间延后,作用减弱,重污染天气无法彻底缓解.  相似文献   

3.
运用WRF-CMAQ模式对2016年1月1日~1月7日青岛市的PM_(2.5)重污染天气进行了模拟研究,分析了青岛市PM_(2.5)重污染形成、持续和清除过程的主要影响因素.与观测对比表明,模式能够较好地模拟出青岛市主要气象要素和近地面PM_(2.5)浓度的变化特征.在重污染形成期,持续的西南气流将山东南部、安徽、江苏等地PM_(2.5)及其前体物传输至青岛地区;逆温层的出现及大气边界层高度的降低使得输送至青岛地区的PM_(2.5)在近地面积累,浓度升高.由山东西南部、安徽北部、河南东部等地传输至山东西北部和京津冀地区的PM_(2.5)及其前体物,在重污染持续期沿近地面传输至青岛,加之液相化学过程生成了大量的二次气溶胶,导致PM_(2.5)浓度一直维持在200μg/m~3以上.重污染清除期,风速加大,水平传输作用加强,高浓度的PM_(2.5)污染带向下风向转移.区域传输对此次青岛市PM_(2.5)重污染事件具有重要贡献,3个时期的贡献率分别为87.0%、68.5%和57.6%.  相似文献   

4.
针对春节期间燃放烟花爆竹易加剧空气污染的现实问题,该文利用2014年1-2月逐日空气质量指数(AQI)和相应时段的基本气象数据以及NCEP/NCAR再分析资料,探析了2014年春节前后陕西关中地区一次重污染天气的气象条件。主要结论如下:该次重污染过程于1月25日开始,2月5日结束,持续12 d,关中地区平均出现重度污染和严重污染各4 d,污染最严重时该区各市的AQI除了铜川外均在400以上,AQI最高值出现在1月31日的渭南,达484。究其气象成因发现,春节前的持续性高空平直纬向气流控制关中地区,地面处于两高压之间过渡区或低压区,形成非常不利于污染物扩散的环流形势场;对应低层925 h Pa存在中心值为-2×10~(-5)s~(-1)的弱辐合区,加之近地面的弱下沉气流,导致大气垂直交换差,是造成污染物堆积的直接边界层动力条件;较低的大气边界层混合高度和最大4.6~℃/100 m的贴地逆温是造成污染物积累的重要层结稳定条件。后向轨迹分析表明,该次重污染过程的污染物来源以本地排放为主,节日期间大量烟花爆竹的燃放起到了雪上加霜的作用,使得空气污染进一步加重。春节后的寒潮过境,最大风速超过10 m/s的冷空气侵入,破坏了边界层静稳天气形势,使得大气扩散能力迅速增强,对当地空气质量迅速转好起到关键性作用。  相似文献   

5.
福州市PM2.5污染过程中大气边界层和区域传输研究   总被引:5,自引:0,他引:5  
以福建省会福州市2013年1月空气质量变化为对象,分析大气边界层变化和周边区域污染物传输对福州市大气颗粒物PM2.5的影响.利用福州市2013年1月逐日地面和探空观测资料以及NCEP提供的2013年1月FNL分析资料,通过大气边界层要素与PM2.5浓度之间的相关性,对PM2.5污染过程的大气边界层特征进行分析;同时采用HYSPLIT后向轨迹模拟及区域风场相关矢分析对影响福州雾霾的污染物区域传输路径进行探讨.结果表明:地面气温与PM2.5浓度呈正相关,地面风速与PM2.5浓度呈负相关,近地面边界层条件有利于霾颗粒物的形成和累积.但不同于我国东部主要污染源区霾污染过程中存在大气边界层逆温,福州PM2.5污染过程中并未出现大气边界层逆温结构,这一边界层结构的垂直混合可有利于区域传输的污染物从上层大气到达近地面从而加重福州霾污染,福州是华东地区一个PM2.5污染物的主要接受区,PM2.5污染物主要以外源输送为主.2013年1月份福州市清洁日近地面风向为海洋吹向大陆的东南风,霾污染日则为大陆吹向海洋的偏北风,PM2.5污染物主要从长三角地区、苏北以及安徽河南一带通过东北和西北方向的传输路径影响福州的空气质量.  相似文献   

6.
2014年10月中国东部持续重污染天气成因分析   总被引:11,自引:0,他引:11       下载免费PDF全文
2014年10月5─13日中国东部发生了大范围、长时间的(雾)霾及重污染天气. 采用AQI数据分析此次大气重污染过程的时、空演变特征,并应用NCEP(美国国家环境预报中心)再分析资料以及地面、小球探空数据,分析了主要天气型演变、边界层及上空的风场、气象条件特征,以研究此次秋季重污染天气的气象成因和形成过程. 结果表明:①华北、东北是此次污染最为严重的地区,其域内各城市持续数日的污染演变可分为AQI显著上升、持续高值、下降3个阶段. ②在AQI上升阶段(10月6—8日),受大陆高压控制,东部地区出现较弱地方风场和偏南风输送风场,风速在0~2 m/s,相对湿度在22%~86%,3 000 m逆温显著利于污染物积累. ③在持续污染阶段(10月8—11日),海上高压滞留,再加上台风“凤凰”北上阻挡大陆高压影响,使东部地区出现持续4 d的偏南风、偏东风弱风场,风速在1~4 m/s,相对湿度为57%~96%,造成严重污染. ④在AQI下降阶段(10月11—12日),后续大陆高压南下,前部冷锋利于污染物清除,风速达到6 m/s,是AQI降低的主要天气背景场. 因此,持续出现的稳定天气形势是导致此次中国东部重污染天气的主要气象原因.   相似文献   

7.
2013年1月河北省中南部严重污染的气象条件及成因分析   总被引:24,自引:2,他引:22  
年1月河北省中南部出现了长时间、大范围的雾霾天气,大气污染严重. 利用河北省AQI(逐日空气质量指数)、气象常规观测数据及NCEP(美国国家环境预报中心)1°×1°格距再分析资料,对此次严重污染事件的气象条件、大气环境背景和形成机制进行了研究. 结果表明:①2013年1月河北省中南部地面气象要素表现异常,与历史同期相比,平均气温低1~2℃、相对湿度高15%以上、日照时数少40%以上、降水日数多但量级小. 地面风力较小且多风向、风速的辐合线,地面散度场上河北省中南部为明显的辐合区,致使水汽和污染物汇聚不易扩散,导致雾霾天气异常偏多,大气污染严重. ②边界层高湿区中丰富的水汽与污染物互为载体,强逆温层结、大气低层的干暖盖、边界层下沉运动等均使水汽和污染物存留在近地层且不易向高空扩散;同时,稳定的大气环流形势为雾霾天气和严重污染提供了有利的大气环境场. ③河北省中南部特殊的地理条件也是雾霾和污染持续的一个重要原因. 低空稳定的偏西气流越过太行山后在山麓东侧下沉,在华北平原地区易形成地面辐合线,从而加剧了近地层水汽和污染物的汇聚.   相似文献   

8.
2015年12月北京市空气重污染过程分析及污染源排放变化   总被引:13,自引:8,他引:5  
2015年12月,北京市及周边地区连续多次出现重污染天气.在此期间,北京市空气重污染应急指挥部两次发布红色预警.为厘清该月重污染的发生过程、生消变化,测算了应急措施下的污染源排放变化情况,并采用数值模拟和地面观测相结合的分析方法,对重污染的形成原因进行初步分析,同时对应急措施的环境效果进行评估.结果表明:1虽然2015年12月北京市主要大气污染物排放量较去年同期有所下降,但排放强度仍然较大,是重污染过程的内因;气象扩散条件不利是重要的外因,地面风速弱,大气稳定度高,相对湿度高,边界层高度降低,源排放及气象因素共同导致了此轮重污染过程.2红色预警应急措施可实现污染物日排放强度减少36%左右,PM2.5浓度下降11%~21%,预警的应急措施不能扭转重污染的态势,但对于缓解PM2.5污染加重趋势有明显的效果.3在重污染天气下,污染物仍在大气中累积,应急措施最明显的效果发生在实施后的48~72 h后,因此建议在PM2.5浓度快速上升前36~48 h实施减排措施,从而对空气质量预报准确性提出更高的要求.  相似文献   

9.
利用2015年1月23-27日恩施基准站逐小时常规地面、探空实测资料,恩施州环境保护局环境监测站同时段SO_2、NO_2、O_3、CO、PM_(10)、PM_(2.5)质量浓度监测资料及AQI资料,从中尺度天气形势场、大气层结稳定度、地面气象要素、地形条件四方面分析了恩施市持续3 d重污染天气的原因。结果表明:当地面受暖气团控制,气温高,风速、降水弱,湿度条件适宜时,对空气污染形成有利,特别是当雾霾共存,相对湿度持续超过90%时,发生重污染的可能性大;重污染发生时,具有地面暖倒槽,高空西风气流,中低层维持一致的偏南气流,低层到近地层暖湿舌发展等中尺度天气特点;较长时间稳定大气层结下,由于逆温、低混合层高度持续存在,加上近地面长时间水平风速处于微弱或静风,抑制了污染物垂直(水平)方向湍流扩散,是导致连续重污染天气出现的最重要原因;恩施市地处地形闭塞的凹地,周围高山的屏障作用下,排放到山谷的污染物由于垂直、水平扩散均受阻,稀释扩散速率受到抑制而积聚到谷底形成了"污染池"现象,这也是导致恩施冬季多雾霾的重要原因之一。  相似文献   

10.
为探究沈阳地区重污染天气成因,文章利用地面、高空气象观测资料、风廓线雷达资料、NECP再分析资料以及大气污染物监测资料,对2019年3月1~6日沈阳地区出现的一次持续性重污染天气过程,探讨了大气污染物质量浓度、地面气象要素变化特征、大气环流配置与外来输送等特征。结果表明,均压场、地面风场弱及辐合、高温高湿是本次重污染天气出现的原因;逆温层结建立、大气垂直运动差,造成污染加剧;来自京津冀东部地区和辽宁中南部地区的PM2.5外来输送对本次污染也有影响。  相似文献   

11.
2014年海口市大气污染物演变特征及典型污染个例分析   总被引:2,自引:0,他引:2  
主要分析了2014年海口市逐日的空气质量指数(AQI)和6种大气污染物的演变特征,同时,结合卫星遥感和轨迹模式等资料和方法对1次典型污染个例进行诊断.结果表明:海口市2014年的空气质量主要以优和良为主,6 d达到轻度污染级别,1 d达到中度污染(1月5日,AQI值为158).1月污染最为严重,其中,阶段1(1-6日)和阶段3(18-23日)AQI值偏高,阶段2(7-17日)和阶段4(24-31日)偏低.1月东亚地区天气形势演变对海口市AQI值具有动力影响.AQI偏高阶段,地面高压系统位于内蒙古东部,华南低层东北风场有利于污染物向海口市输送;而在AQI偏低阶段,地面高压系统东移出海,低层偏东风场不利于污染物的输送.后向轨迹聚类分析表明,1月海口市比率最大(39%)的气流主要经过大气污染相对严重的广东珠江三角洲(珠三角)地区,有利于污染物的区域传输.污染个例分析表明,海口市污染物浓度变化与气象要素有密切关系,10 m风速较小有助于近地面的污染物在区域内累积,水平风垂直切变偏弱对天气尺度扰动的发展和大气的垂直混合不利.卫星遥感和后向轨迹分析也表明,外源输送与海口市这次大气污染事件有直接关系.  相似文献   

12.
利用地面常规气象观测资料、NCEP(National Centers for Environmental Prediction)再分析资料、AQI(空气质量指数)、ρ(PM2.5)、ρ(PM10)等大气环境监测数据,对2016年12月江苏省连续出现的两次大范围大气污染过程进行了对比分析.结果表明:这两次连续污染天气过程可分为颗粒物积聚-清除-再积聚-彻底清除4个阶段,相应地,地面形势表现为均压场-低压倒槽-西路冷空气-东路冷空气.第1次污染天气形成和维持主要是长时间受均压场控制、近地层逆温和高相对湿度有利于颗粒物积聚;第2次污染天气形成和维持主要是因西路冷空气南下、上游重污染地区颗粒物随冷空气向江苏省输送.持续降水和持续2.0 m/s以上偏东风对大气中颗粒物有较明显的清除作用.淮北西部垂直、水平扩散条件差、降水清除时间短,导致该地区在全省污染等级最严重、持续时间最长.西路冷空气影响期间,各站颗粒物质量浓度转为快速上升,东部地区在偏西风持续49~58 h后空气质量改善为良,中西部地区无法得到有效改善;东路冷空气影响7~22 h后,中西部地区空气质量转为良,高压底部持续偏东风使全省颗粒物得到彻底清除,连续污染天气结束.研究显示,西路弱冷空气的输送会加剧江苏省的污染程度,持续较长时间的东路冷空气则可以改善江苏省的空气质量.   相似文献   

13.
基于综合观测的中国中东部地区一次严重污染过程分析   总被引:1,自引:0,他引:1  
利用寿县国家气候观象台GRIMM80颗粒物监测仪、Aurora3000浊度计等探测的气溶胶浓度、大气散射系数分析了2018年1月中国中东部地区发生的一次严重污染过程.利用Airda微波辐射计探测的近地层温湿廓线数据,结合地面常规气象观测资料及EC再分析资料,探讨了此次污染过程形成、短时消散及清除的气象原因.结果表明:与历史同期相比,500 hPa极涡较浅、经向环流减弱;850 hPa西南气流强盛,中低层水汽充足加剧污染.污染发生于冷空气间歇期.在此污染过程中,地面平均风速为1.5 m·s-1,日均日照时数为0.1 h,相对湿度为91.2%,高湿、小风、多云寡照不利于污染水平扩散.1月18-22日边界层持续存在多层逆温,第一逆温层基本多为贴地逆温,逆温高度低于200 m,近地层大气比湿超过5 g·kg-1,最大值高于7 g·kg-1.在此期间出现两次空气质量短时段好转,这主要源于对流层中低层转为西北风,900 hPa以下聚集相当位温(Qe)低于288 K的浅薄冷空气堆,导致贴地逆温层消失地面污染被稀释.但两次弱冷空气没有打破边界层内有利于污染聚集的逆温、高湿结构,地面气团温度露点差无明显变化.23日较强冷空气使高空干洁大气入侵近地层,850 hPa以下Qe<284 K,表明地面污染气团被置换,污染过程结束.  相似文献   

14.
选取2019年1月江西省两次大气污染过程为研究对象,利用常规气象观测资料、美国国家环境预报中心(NCEP)再分析资料、全球资料同化系统(GDAS)气象数据和空气质量数据,分别从局地气象要素变化、地面天气形势、大气动力和热力条件及污染潜在源区等进行分析,对比两次污染过程形成机制.两次污染过程地面天气形势分别为冷锋前部型和低压倒槽型.冷锋前部型污染形成主要原因为冷空气南下在江西省减弱辐合导致上游细颗粒物输送并堆积,西北风增大细颗粒物浓度降低.低压倒槽型污染形成原因为较长时间处于高湿、小风或静风、逆温下的污染累积.对两次过程中污染较为严重的九江市进行分析,冷锋前部型九江市近地面主要受西风影响,低压倒槽型主要受东北风影响,低压倒槽型九江市风速多在2 m·s-1以下.两次污染期间大于3 m·s-1的风速有利于污染物清除.长时间高湿、小风(< 2 m·s-1)及风场辐合,是低压倒槽型九江市重污染维持较长时间的重要原因.低压倒槽型大气垂直结构较冷锋前部型稳定.低压倒槽型垂直湍流弱、低层风速小于2 m·s-1,且存在多层逆温和深厚的湿区,冷锋前部型存在明显下沉运动,逆温强度明显弱于低压倒槽.九江市PM2.5污染潜在贡献源主要来自河南东部、山东西部和安徽西北部;低压倒槽型九江市潜在源区主要位于江西省内及与江西省接壤的湖北东南部、安徽西南部.  相似文献   

15.
珠三角秋季典型气象条件对空气污染过程的影响分析   总被引:2,自引:0,他引:2  
利用空气质量指数(AQI)、主要大气污染物浓度和气象要素、天气图等数据资料,结合中尺度数值天气预报模式WRF,对2014年10月珠三角地区污染期间的天气形势及气象特征进行了分析.结果表明,WRF模式可以较好地反映珠三角地区主要城市地面和高空气象要素的时空变化,9个城市平均地表的温度、相对湿度和风速的模拟值与观测值的相关系数分别为0.90、0.87和0.78.对2014年10月3次污染过程的分析表明,造成该时段珠三角地区空气污染的天气形势主要是高压底部型和均压场型.静风或小风(2 m·s~(-1))及稳定的大气层结均不利于污染物的扩散,同时由于偏北气流输送周边污染物到珠三角地区,导致污染物浓度不断增加.相对湿度低于65%时,珠三角地区首要污染物以O_3为主;相对湿度高于70%时,PM_(2.5)浓度逐渐增加,成为主要污染物.高温等气象条件会影响光化学反应,加重珠江三角洲的空气污染,表现了该地区大气复合污染的特性.  相似文献   

16.
2011年10月珠江三角洲一次区域性空气污染过程特征分析   总被引:3,自引:1,他引:2  
2011年10月18—25日珠江三角洲地区出现了一次区域性空气污染过程,重污染区域集中在西部,后期向中部转移,PM10为首要污染物.针对本次空气污染过程的研究发现,此次珠江三角洲地区空气污染过程主要受大尺度冷高压活动的影响,一直为下沉气流所控制,500 m以下近地层风速很小,边界层高度较低,存在贴地逆温层,非常不利于污染物的输送和扩散.PM10浓度与风速、能见度呈显著的负相关关系,与温度相关性不显著;且与风速和温度的相关性存在滞后性.稳定天气形势、大范围下沉气流、近地层静小风和贴地逆温是导致这次区域性空气污染过程的气象原因,PM10浓度增加导致珠江三角洲能见度下降.  相似文献   

17.
杜楠  陈磊  廖宏  朱佳  李柯 《环境科学》2023,44(7):3705-3714
自2013年我国实施《大气污染防治行动计划》以来,大气颗粒物浓度显著降低,但臭氧(O3)污染日益严峻,同时对流层O3作为一种重要的温室气体,其辐射强迫能够影响天气和空气质量.利用双向耦合的区域空气质量模型WRF-Chem,再现2017年6月发生在华北地区的一次O3污染事件,通过敏感性试验分析对流层臭氧辐射强迫(TORF)对当地气象场的影响,以及改变的气象变量对O3空气质量的反馈作用.结果表明,WRF-Chem模式在气象要素的模拟上表现出较好的性能,并且能够很好地捕捉到O3浓度的时空演变特征.TORF使北京-天津-河北-山东地区的近地面气温平均升高0.23 K (最大增温可达0.8 K)、近地面相对湿度降低1.84%、边界层高度增加27.73 m.TORF对风速的影响较弱(-0.02 m ·s-1),但产生的西南风异常容易将上游污染地区的O3和其前体物输送至华北地区.在臭氧辐射反馈的影响下,研究区域内φ(O3)平均增加1.7%(1.23×10-9),而在污染严重的北京和天津地区,φ(O3)增加量最高可达5×10-9.进一步利用过程诊断分析法可以发现,增强的气相化学反应是TORF恶化近地面O3污染的主导原因.  相似文献   

18.
2020年1月宁夏回族自治区典型工业城市石嘴山市出现了长时间、高强度PM2.5污染天气.为揭示多因素综合作用对重污染天气的影响,在分析逐日空气质量指数(AQI)和常规污染物浓度变化特征的基础上,选取重点污染时段(2020年1月1—17日)为研究对象,基于环境空气质量数据、加密自动气象观测数据及NCEP再分析资料,采用统计分析、污染特征雷达图、气流后向轨迹聚类及天气诊断相结合的方法对重污染过程特征和成因进行分析.结果表明:①2020年1月1日、3日石嘴山市重污染天气主要受燃煤、工业(钢铁、焦化)和机动车等高强度污染排放影响,PM2.5主要来自一次源;9日重污染天气PM2.5受二次颗粒物生成影响显著,本地扬尘也有贡献,ρ(PM2.5)和AQI均达峰值,分别为216 μg/m3和266;其他时段重污染天气由污染物累积和混合造成.②乌海市及其周边污染气团跨区域传输是促使石嘴山市出现高强度PM2.5污染天气的另一重要因素,当巴彦淖尔市—乌海市—石嘴山市为一致偏北气流、风速小于2 m/s时,易使乌海市及其周边污染气团向南扩散,石嘴山市ρ(PM2.5)出现短时间爆发增长.③持续高湿静稳气象条件使污染天气长时间维持并加重,当欧亚大陆中高纬度500 hPa盛行纬向弱西风气流、近地面石嘴山市处在蒙古弱高压底部均压场、风向为弱偏北风或偏东风时,易形成持续性PM2.5污染天气;当风速减至0.7 m/s、相对湿度增至78%时,污染加重.研究显示,此次持续PM2.5重污染过程是本地高强度污染排放、二次颗粒物生成、区域传输与不利气象条件等因素综合影响和相互叠加的结果;当出现静稳、高湿等不利气象条件时,应加强对各类污染物排放的管控力度,同时充分利用石嘴山市及其周边加密自动气象观测资料,研判污染发展趋势和传输特征,及时开展与乌海市及其周边地区的大气污染联防联控.   相似文献   

19.
利用常规气象观测资料、空气质量监测资料、再分析资料和数值模式资料,分析了2014年2月20-26日京津冀地区持续重污染天气过程的环流背景、气象要素特征、静稳天气条件和传输条件.结果表明:2月20-26日,亚洲东部受弱高压脊控制,京津冀及周边地区位于地面高压后部,等压线较为稀疏,气压梯度小,造成地面风速较小;与此同时,混合层高度低,通风系数小和逆温存在,构成重污染天气出现和维持的气象条件,均不利于大气中污染物和水汽的垂直和水平扩散.静稳天气指数对于重污染天气有一定的指示意义,高静稳天气指数通常对应高PM2.5浓度,且二者变化趋势一致性高;2月20-26日静稳天气指数总体上大于2014年1-3月其他几次污染过程,且在高位长时间维持,造成此次污染过程更严重.此外,传输条件也是京津冀重污染天气的主要成因:地面高压西侧的偏南或偏东气流有助于污染物和水汽向京津冀地区输送和聚集,使能见度进一步降低、污染物浓度进一步升高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号