首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
序批式移动床生物膜反应器内同步短程硝化反硝化的控制   总被引:6,自引:1,他引:5  
在序批式移动床生物膜反应器(SBMBBR)内,对进水COD较低的条件下,模拟生活污水的亚硝化及脱氮性能进行了研究.结果表明,缺氧时间、进水COD、NH44 -N浓度、pH值以及溶解氧对亚硝化过程有明显影响.在进水COD为100mg·L-1NH4 4-N浓度为50mg·L-1时,调控溶解氧、pH,出水的亚硝化率可到99.7%,总氮去除率可达66.4%,表明系统中发生了同步短程硝化反硝化.  相似文献   

2.
序批式膜反应器同步硝化和反硝化的特性   总被引:5,自引:0,他引:5       下载免费PDF全文
为提高污水生物脱氮处理的效率和减少外加碳源,研究了序批式膜反应器(SBBR)在有氧情况下处理生活污水中同步硝化和反硝化的特性.试验表明,原水TN为80~110mg/L和溶解氧浓度为0.8~4.0mg/L情况下,出水TN小于15mg/L,NH3-N去除率达100%,TN去除率54%~77%,NH3-N容积负荷率为47~94mg/(L·d),TN容积负荷率为56~113mg/(L·d).TN的变化规律为在NH3-N降到零或最小之前,TN持续降低之后,TN有短时的上升后再缓慢降低.在较大的溶解氧浓度范围内,SBBR具有同步硝化和反硝化的能力,建议将NH3-N降解到零或最小值的时刻,作为同步硝化和反硝化的结束点.  相似文献   

3.
微气泡曝气生物膜反应器同步硝化反硝化研究   总被引:6,自引:5,他引:1  
刘春  年永嘉  张静  张明  张磊  龚鹏飞  肖太民  李星 《环境科学》2014,35(6):2230-2235
同步硝化反硝化(SND)是废水处理中的新型生物脱氮工艺,和传统生物脱氮工艺相比具有显著的应用优势.本研究采用微气泡曝气固定床生物膜反应器,研究了SND过程中污染物去除效果并检测了生物膜功能菌群的变化情况.结果表明,在微气泡曝气固定床生物膜反应器内可以实现同步硝化反硝化,通过提高进水COD负荷和C∶N比,降低溶解氧(DO)浓度,同时增加填料床层孔隙率,可以改善SND效果.当进水COD负荷和总氮(TN)负荷为0.86 kg·(m3·d)-1和0.10 kg·(m3·d)-1,且填料床层孔隙率为81%时,COD和TN的去除率分别为97.6%和70.2%,实现了COD和TN的同步高效去除;同时,微气泡曝气对氧传质的强化作用使得氧利用率高达91.8%.此外,生物膜活性和硝化及反硝化功能菌群的变化,与反应器COD、氨氮和TN去除能力的变化基本一致.  相似文献   

4.
移动床膜生物反应器同步硝化反硝化特性   总被引:11,自引:3,他引:8  
杨帅  杨凤林  付志敏 《环境科学》2009,30(3):803-808
采用挂膜填料代替传统膜生物反应器(MBR)的活性污泥,构建一种新型的移动床膜生物反应器 (MBMBR),考察其处理模拟生活污水的效果及同步硝化反硝化(SND)特性.结果表明,移动床膜生物反应器运行67 d,对模拟生活污水表现出良好的去除有机物及同步硝化反硝化能力.进水COD浓度为573.5~997.7 mg/L时,膜出水COD去除率为88.3%~99.2%.进水氨氮浓度为45.5~99.2 mg/L时,膜出水氨氮去除率为72.1%~99.8%,总氮去除率为62.0%~96.3%.批式实验结果表明,生物膜去除总氮的最佳溶解氧浓度为1 mg/L,其中氨氮和总氮去除率分别为100%和60%.生物膜系统内可能存在好氧反硝化现象.DO为3 mg/L且有机碳源充足时,生物膜总氮去除率为99.0%,SND率达到99.8%.扫描电镜对生物膜的观察发现生物膜内部存在着明显的孔隙,有利于溶解氧和有机基质从外界向生物膜内部传递.  相似文献   

5.
同步硝化反硝化耦合除磷工艺的快速启动及其运行特征   总被引:4,自引:4,他引:0  
冷璐  信欣  鲁航  唐雅男  万利华  郭俊元  程庆锋 《环境科学》2015,36(11):4180-4188
以低COD/N生活污水(C/N为3∶1~4∶1)为进水基质,在序批式活性污泥反应器(SBR)中接种好氧颗粒污泥(AGS),通过逐步降低溶解氧(DO)浓度的方式快速实现同步硝化反硝化耦合除磷.反应器运行20 d后(DO浓度为0.50~1.0mg·L-1),系统出现同步硝化反硝化耦合除磷的现象.在随后运行的40 d里,反应器对废水COD、NH+4-N、TN和TP的平均去除率分别为84.84%、93.51%、77.06%和85.69%;出水NO-3-N和NO-2-N平均浓度分别为4.01 mg·L-1和3.17 mg·L-1.反应器启动运行后期,污泥体积指数(SVI)为55.22 m L·g-1,沉降性能良好,颗粒结构较完整.不同氮源的周期曝气阶段结果表明,对TN的去除率为NH+4-NNO-2-NNO-3-N;对TP的去除率为NO-3-NNO-2-NNH+4-N,反应器主要以同步硝化反硝化脱氮和反硝化方式除磷.  相似文献   

6.
在序批式生物膜反应器内接种以氨氧化细菌和反硝化细菌为主的活性污泥,期望实现亚硝酸型同步硝化反硝化生物脱氮,处理城市污水。在进水TN为30~40 mg/l、氨氮为30~35 mg/l、COD为250 mg/l左右、pH值为7.50~7.80、温度为25±1℃等条件下,研究不同溶解氧对总氮去除率和亚硝酸盐氮积累率的影响,结果表明,在溶解氧浓度为1.5~2.5 mg/l时,可以实现稳定的亚硝酸型硝化反硝化,总氮去除率为75%左右,亚硝酸盐氮积累率为65%~82%。  相似文献   

7.
DO对SBBR工艺同步硝化反硝化的影响研究   总被引:2,自引:1,他引:1  
实验研究了序批式生物膜反应器(SBBR)同步硝化反硝化生物脱氮城市污水处理工艺。试验结果表明:DO是影响SBBR工艺实现同步硝化反硝化的一个重要因素,将DO控制在2.8~4.0mg/L的范围内,可以取得较好同步硝化反硝化效果,总氮去除率可达67%以上。通过好氧反应过程中溶解氧在生物膜内反应扩散模型以及扫描电镜对生物膜的形态结构观察,分析了SBBR工艺同步硝化反硝化机理。SBBR工艺同步硝化反硝化主要是由微环境引起的,生物膜在好氧条件下能创造缺氧微环境,DO浓度直接影响生物膜内部好氧区与缺氧区比例的大小,进而影响硝化和反硝化的效果。DO浓度升高,使氧传递能力增强,使生物膜内部原来的微环境由缺氧性转为好氧性;反之DO浓度降低,生物膜内部微环境倾向于向缺氧或厌氧发展。  相似文献   

8.
亚硝化/电化学生物反硝化全自养脱氮工艺研究   总被引:6,自引:0,他引:6  
开发出了针对低C/N比高氨氮废水处理的亚硝化/电化学生物反硝化全自养脱氮新工艺,并对新工艺进行了系统的研究.试验结果表明,新工艺能取得较好的脱氮效果,在溶解氧为0.5~1.2mg·L-1,pH值为7.5~8.2,温度为17~30℃,进水氨氮浓度不高于1000 mg·L-1,C/N比不高于0.5,HRT不高于32h条件下,亚硝化/电化学反硝化工艺装置运行稳定,亚硝化段膜生物反应器(MBR)出水的氨氮去除率和亚硝氮生成率均能稳定在50%左右,MBR出水中的剩余氨氮和生成的亚硝氮经电化学生物反硝化段(硫碳混合反应器)处理后,最终出水总氮去除率超过95%;出水中的SO2-4浓度不高于1280 mg·L-1.新工艺最高氨氮负荷为1.11kg·m-3·d-1.  相似文献   

9.
循环流生物膜反应器同时硝化反硝化实验研究   总被引:3,自引:0,他引:3  
研究了循环流软性填料生物膜反应器的同时硝化反硝化。实验结果表明,反应器中确实存在着同时硝化反硝化现象。考察了碳氮比(C/N)和溶解氧(DO)对同时硝化反硝化的影响。在进水COD和NH4+—N浓度为500mg/L、15mg/L时,出水COD、NH4+—N和TN浓度<50mg/L、3.0mg/L、4.5mg/L,COD去除率、硝化率和反硝化率分别达到90%、80%和70%。  相似文献   

10.
附积床生物膜反应器同步硝化反硝化脱氮特性   总被引:2,自引:1,他引:1  
基于传统的生物膜技术开发了新型的附积床生物膜反应器并考察其脱氮效果.结果表明,在不同HRT下可以获得稳定的COD去除效果,平均去除率达81.7%;在水力停留时间为3.90 h,NH+4-N、TN的平均负荷分别为0.47 kg/(m3.d)、0.59kg/(m3.d)时,可以获得NH+4-N 92.7%和TN 67.5%的去除效果.实验中混合液的溶解氧浓度(DO)是影响TN去除效果的最重要因素,pH是影响NH4+-N、TN去除效果的重要因素之一,最佳脱氮效果的控制条件为DO在0.1~2.0 mg/L之间,pH值在7.0~7.5之间,分析了实验中同步硝化反硝化脱氮的机制.  相似文献   

11.
An aerobic sequencing batch biofilm reactor (SBBR) packed with Bauer rings was used to treat real domestic wastewater for simultaneous nitrification and denitrification. The SBBR is advantageous for creating an anoxic condition, and the biofilm can absorb and store carbon for good nitrification and denitrification. An average concentration of oxygen ranging from 0.8 to 4.0 mg/L was proved very efficient for nitrification and denitrification. Volumetric loads of TN dropped dramatically and effluent TN concentration increased quickly when the concentration of average dissolved oxygen was more than 4.0 mg/L. The efficiency of simultaneous nitrification and denitrification (SND) increased with increasing thickness of the biofilm. The influent concentration hardly affected the TN removal efficiency, but the effluent TN increased with increasing influent concentration. It is suggested that a subsequence for denitrification be added or influent amount be decreased to meet effluent quality requirements. At optimum operating parameters, the TN removal efficiency of 74%–82% could be achieved. Translated from Acta Scientiae Circumstantiae, 2006, 26(5): 728–733 [译自: 环境科学学报]  相似文献   

12.
智能化控制SBBR处理不同C/N城市污水脱氮除磷性能研究   总被引:2,自引:0,他引:2  
采用自主研发的智能化控制系统,以智能化控制的运行方式使序批式生物膜反应器(SBBR)形成交替运行的好氧-缺氧环境,对不同C/N人工模拟城市污水进行了脱氮磷实验研究.该实验中控制反应器内水温为25℃±1℃,曝气量为150 L/h,进水COD浓度为300 mg/L、TP浓度为5 mg/L,以TN浓度为30、60、90 mg...  相似文献   

13.
通过一种新型的短程反硝化-厌氧氨氧化(Partial Denitrification/Anammox,PD/A)固定生物膜工艺,同步处理模拟的低C/N城市污水厂生活原水和二级出水,研究了不同进水C/N(1.3,1.5,1.6,1.8)和不同pH值(7.5,8.0,8.5,9.0)下该工艺的脱氮效果.结果表明,逐步提高进水C/N强化了系统的完全反硝化作用,平均NO3--N去除率从52.3%增长至85.7%;较高的进水pH值促进了短程反硝化过程中NO2--N的积累,继而强化了厌氧氨氧化的自养脱氮作用,平均NH4+-N去除率从82.2%增长至89.7%.在C/N=1.6、pH=9.0的条件下,该工艺达到了88.3%的TN去除率,出水TN稳定低于2mg/L.此外,分析了PD/A固定生物膜工艺在传统AAO工艺升级改造中的潜力.  相似文献   

14.
对A2N连续流工艺进行改进,在后曝气池中填加生物膜填料,以生活污水为处理对象,考察了后曝气池水力停留时间(HRT)对后曝气池内同步硝化反硝化(SND)以及对改进后的A2N工艺除磷脱氮性能的影响.后曝气池HRT为1.3h时,总磷(TP)平均去除率为90%,总氮(TN)平均去除率为75%,但平均出水氨氮浓度较高(为8.6 mg.L-1),后曝气池内基本未发现SND现象.后曝气池HRT为2.3h时,TN平均去除率达到80%,TP平均去除率高达95%,出水平均氨氮浓度较低(2.2 mg.L-1),后曝气池内同步硝化反硝化去除的TN量为2.42 mg.L-1.后曝气池HRT为4h、6h时,工艺TP平均去除率逐渐下降至60%,由于可利用的COD值较低,同步硝化反硝化去除的TN并未随HRT延长而有明显增长,TN去除率也逐渐降至接近60%.试验证明在后曝气池内填加生物膜并合理调控HRT,可强化工艺的脱氮除磷效果.  相似文献   

15.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

16.
微气泡曝气生物膜反应器是微气泡曝气技术与好氧生物处理相结合的新型处理工艺.本研究采用微气泡曝气生物膜反应器在低气水比下处理低C/N比废水,考察了生物脱氮过程和性能,并分析了脱氮功能菌群变化.结果表明,通过低气水比(小于1∶2)控制DO浓度并降低进水C/N比,可以实现生物脱氮过程从同步硝化-反硝化向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,并可获得较高的低C/N比废水生物脱氮性能. DO浓度低于1. 0 mg·L-1、进水C/N比为1∶2. 8时,SNAD过程成为生物脱氮的主要途径,TN平均去除率可达到76. 3%,TN平均去除负荷为1. 42 kg·(m3·d)-1,厌氧氨氧化过程对TN去除的贡献率为86. 0%.随着进水C/N比降低,生物膜中亚硝化菌群和厌氧氨氧化菌群的相对丰度逐渐增加,而硝化菌群和反硝化菌群的相对丰度逐渐降低.生物脱氮功能菌群变化与脱氮过程转变为SNAD过程相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号