首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2013年4月~2014年1月在天津滨海新区泰达学院分季节采集23对大气样品(气相+颗粒相).分析了样品中84种多氯联苯(PCBs)异构体,结果表明,总浓度为71.08~567.36pg/m3(均值307.18pg/m3);春、夏、秋、冬四个季节的PCBs浓度分别为275.19,372.55,259.96,281.81pg/m3,季节规律不明显,冬季浓度偏高,可能是由工业源排放的PCBs和冬季较高的大气颗粒物浓度造成;气相多氯联苯占总浓度的77.47%,且季节差异明显,夏季(92.44%)>秋季(85.16%)>春季(80.61%)>冬季(42.70%);Clausius-Clapeyron (C.C)方程斜率为-5302,表明气相PCBs对温度依赖程度很大,其受到了当地工业源的影响;log KP与log PL0和log KOA的斜率分别为-0.43和0.46,偏离了气粒分配平衡时对应的斜率-1和+1,表明滨海新区大气中多氯联苯受到了当地污染源排放的强烈影响,所以没有达到平衡状态.  相似文献   

2.
为了解西安城区大气中多氯联苯(Polychlorinated biphenyls,PCBs)的浓度水平、季节变化特征及来源,于2012年夏季、冬季分别对西安市城区大气进行每周1次的主动采样,共获得22对大气样品(气态和颗粒态).结果表明,西安城区大气中∑64PCBs的浓度为76.21~338.77pg·m-3,平均浓度为183.85 pg·m-3,且主要存在于气态样品中.组成上主要以低氯代PCBs为主,其中,三氯和四氯代PCBs占总浓度的59.64%~91.39%.气态样品中,夏季、冬季PCBs的平均浓度分别为201.68、151.11 pg·m-3;颗粒态样品中,冬季PCBs平均浓度是夏季的6.65倍.通过主成分分析法对西安城区大气中PCBs的来源进行解析,发现主成分1的方差贡献率为36.06%,主要为来自我国生产的变压器油源;主成分2的方差贡献率为20.29%,可能来自于油漆的使用.  相似文献   

3.
北京市石景山区夏季雨水和大气中PCBs的特征解析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用气相色谱-质谱联用技术(GC-MS)对北京市石景山城区夏季雨水和大气中多氯联苯(PCBs)的分布特征进行了解析.结果表明,雨水中主要为溶解态PCBs,比例高达65.23%.大气中的PCBs以气态为主,占67.70%.研究表明,雨水对大气中颗粒态和气态PCBs的清除系数相当,分别为6.00×104和5.37×104.8种类二 PCBs同类物的毒性当量总和在大气气相、颗粒相和雨水中分别为0.36pg/m3、0.02pg/m3和0.29ng/L.北京石景山地区8种类二 PCBs同类物对成人呼吸暴露值为0.08pg/(kg·d),说明北京石景山地区人群呼吸暴露风险比较低.  相似文献   

4.
长江口大气多氯联苯干湿沉降通量   总被引:2,自引:0,他引:2  
大气干、湿沉降是水体持久性有机污染物的主要来源.长江口是我国陆海相互作用研究的关键区域,是大气污染物监测的重点区域.为了解长江口大气中多氯联苯(Polychlorinated Biphenyls, PCBs)的污染特征,本研究共采集了自2013年10月—2014年8月4个季度93对大气样品(气态和颗粒态)和13个雨水样品,分析了样品中7种典型PCBs浓度并估算了PCBs的干、湿沉降通量.结果表明:①长江口大气中PCBs(气态和颗粒态)浓度范围是2.37~207 pg·m~(-3),平均浓度为44.9 pg·m~(-3);与以海洋为背景的国内外大气中PCBs相比,浓度处于中度水平;大气中PCBs主要存在于气态中,占77%;夏季气态PCBs浓度明显高于其他3个季度;颗粒态PCBs浓度呈冬、春季高,夏、秋季低的特点.②PCBs的干沉降通量为681~2330 pg·m~(-2)·d~(-1),年均值为1880 pg·m~(-2)·d~(-1),冬、春季干沉降通量明显高于夏、秋季;湿沉降通量为184~1210 pg·m~(-2)·d~(-1),年均值为863 pg·m~(-2)·d~(-1),夏季湿沉降通量明显低于其他3个季节.总体上,PCBs干、湿沉降通量年均变化为865~3300 pg·m~(-2)·d~(-1),年均值为2250 pg·m~(-2)·d~(-1),干沉降占总沉降通量的69%.  相似文献   

5.
乌鲁木齐市典型城区大气PAHs气-粒分配特征   总被引:4,自引:3,他引:1       下载免费PDF全文
大气中PAHs的气-粒分配是影响其在大气中分布、迁移和转化的一个重要因素,于2011年12月—2012年12月在乌鲁木齐市天山区采集大气气相和颗粒相样品,对聚氨酯泡沫样品的气相和石英纤维膜的颗粒相(TSP)中的16种PAHs进行分析.结果表明:采样期间颗粒相和气相中ρ(∑16PAHs)总和的年均值为(116.71±92.74) ng/m3,采暖期〔(173.16±84.26) ng/m3〕是非采暖期〔(39.46±16.19) ng/m3〕的4.4倍;采暖期颗粒相中ρ(∑16PAHs)平均值为(40.60±3.03) ng/m3,气相为(134.46±13.05) ng/m3,2~3环PAHs主要存在于在气相中,4~6环PAHs主要存在于颗粒相中.在非采暖期,颗粒相ρ(∑16PAHs)平均值为(25.37±3.21) ng/m3,气相为(14.95±1.06) ng/m3.采用吸附和吸收模型对PAHs的分配特征进行了研究,表明PAHs的lg Kp(Kp为分配系数)与lg PL0(PL0为过冷蒸汽压)线性关系显著,在采暖期斜率绝对值为0.34,说明PAHs的气-粒分配以吸收为主;在非采暖期的斜率绝对值为0.78,表明PAHs的气-粒分配受吸收和吸附共同作用.PAHs的lg Kp与lg Koa(Koa为正辛醇-大气分配系数)线性关系显著,在采暖期斜率为0.38,表明PAHs气-粒分配并未达到平衡;在非采暖期,斜率为1.22,表明PAHs气-粒分配接近平衡.研究显示,乌鲁木齐市城区大气PAHs气-粒分配在采暖期及非采暖期特征不同,应区别制订政策和管理措施.   相似文献   

6.
深圳市空气中多氯联苯污染的初步研究   总被引:11,自引:3,他引:8  
于2001年春季使用大流量采样器对深圳市气相和颗粒相空气样品进行采集,分析其中的多氯联苯(PCBs)的含量和分布,计算出PCBs的氯数分布和气 固两相之间的分配,并将所得结果与国外的同类研究进行了对比。结果表明,深圳市空气中PCBs的质量浓度处于中等污染水平;与国外同类研究相比,深圳市空气中颗粒相PCBs的质量浓度贡献远高于其他地区的对应值;lgKp与lgPL0线性回归分析表明,深圳市空气中的PCBs接近气 固分配的平衡状态。   相似文献   

7.
西安城区大气中多环芳烃的季节变化特征及健康风险评价   总被引:11,自引:1,他引:11  
利用大流量主动采样器于2008年8月至2009年7月采集了西安城区大气样品,研究了大气中多环芳烃(PAHs)的季节变化特征.结果表明,西安大气中16种美国EPA优控的PAHs(∑PAHs)气固两相总浓度为37~620ng·m-3(年平均为195ng·m-3),具有明显的季节差异,依次为夏季(74ng·m-3)<春季(106ng·m-3)<秋季(213ng·m-3)<冬季(360ng·m-3).气态PAHs以3~4环为主,颗粒态PAHs以5~6环为主.分子组成表明西安大气PAHs主要来自于燃煤和机动车尾气及生物质燃烧的复合源.应用BaP毒性当量因子及健康风险评价模型对西安城区成人和儿童进行PAHs健康风险评价,结果显示成人和儿童的日均暴露剂量分别为24.3×10-6mg·kg-·1d-1和5.6×10-6mg·kg-·1d-1,终身致癌超额危险度分别为7.5×10-5和1.7×10-5,可能造成成人和儿童的预期寿命损失分别约为467.6min和107.5min.  相似文献   

8.
邓绍坡  骆永明  宋静  滕应  陈永山 《环境科学》2010,31(12):3018-3027
对某电子垃圾拆解地大气、土壤、蔬菜进行采样,分析其中PCBs的含量;根据获得的大气中气态及土壤中PCBs的含量,应用Trapp作物吸收模型对该地区叶菜类蔬菜中PCBs的含量进行模拟预测;根据模型机制,分析了叶菜类蔬菜中PCBs的来源、构成及影响蔬菜对PCBs吸收的因素;利用美国EPA人体健康风险评估方法,分析了环境中PCBs被蔬菜吸收后经食物链对人体健康的影响.结果表明,Trapp作物模型可较好地依据土壤及大气中PCBs含量预测叶菜类蔬菜中PCBs含量,实测值与预测值相近,蔬菜中7种PCBs总和实测值为51.2μg.kg-1,模型预测值为39.9μg.kg-1;大气中气态PCBs是叶菜类蔬菜中PCBs的主要来源,模型预测表明其贡献率高达98.8%;蔬菜吸收PCBs的途径、辛醇-水分配系数(Kow)及辛醇-大气分配系数(Koa)影响蔬菜中PCBs含量及构成比例;蔬菜吸收PCBs达到平衡所需时间与lgKow、lgKoa有很好的乘幂相关性,多元线性回归表明lgKoa是更重要的影响因素.大气气态PCBs被蔬菜吸收后对人体健康的致癌风险是气态PCBs的10 000多倍,非致癌风险则增加了近200倍,原因主要在于:一是蔬菜吸收、积累了空气中毒性更高的高氯代PCBs,经口摄入PCBs的毒性因子极大增加;二是成人每天食用蔬菜摄入PCBs的量相当于正常情况下成人通过呼吸空气摄入PCBs量的71倍多.  相似文献   

9.
西安采暖季大气中多环芳烃的污染特征及来源解析   总被引:7,自引:3,他引:4  
采用改进型的大流量主动采样器,对西安采暖季大气总悬浮颗粒物(TSP)样品和气相样品进行了连续采集,利用GC-MS测定多环芳烃(PAHs)的浓度.结果表明,颗粒态和气态样品中Σ16PAHs平均值分别为(108.15±41.44)ng/m3和(260.14±99.84)ng/m3,2~3环的PAHs主要分布在气态中,而4环的PAHs主要分布在颗粒态中,PAHs的气固相分配系数和其过冷饱和蒸气压具有良好的相关性.温度与分配系数也具有显著相关性,并应用逐步回归方法得出分配系数与温度的回归方程.利用特征分子比值法进行源解析,发现西安大气中PAHs主要来源于煤的不完全燃烧和汽车尾气的排放,并利用因子分析和多元线性回归对各种来源的贡献率进行了计算.通过污染指数与因子的代表物质进行偏相关分析,发现某些PAHs与SO2、NO2来自于相同的污染源.  相似文献   

10.
珠江口及南海近海海域大气多环芳烃分布特征   总被引:3,自引:0,他引:3  
分冬、春两次航次分别采集了珠江口及南海近海海域大气气溶胶样品和气相样品,同时以广州和中山作为陆基对照点,对16种EPA优控多环芳烃进行了分析.结果表明,大气PAHs主要以气态化合物为主,总PAHs(气态+颗粒态)的含量范围为49.6~256.6 ng/m3,平均120.7 ng/m3.珠江口海域大气颗粒态多环芳烃季节变化显著,冬、春航次大气颗粒态多环芳烃的含量分别为6.7~18.0 ng/m3和0.4~5.1 ng/m3,冬季航次期间大气颗粒态PAHs含量的高值主要源于大陆气流对城市群大气PAHs污染的输送,另外干冷的季节亦有利于PAHs向颗粒态的富集.与此相反,气态多环芳烃含量的季节差异不明显.在冬季,随东北季风携带的城市粉尘可以将大气中的气态PAHs捕获,而春季航次的大气PAHs主要来源于西太平洋地区的远程输送和PAHs的海-气交换作用.认为受控于季风活动的水、热因子组合特征,是影响珠江口海域大气PAHs含量与分布的主导因素.  相似文献   

11.
颗粒态汞在大气中停留时间短、易沉降,易对局地环境与人体健康造成危害,明确不同粒径颗粒态汞的分布,对进一步认知大气汞循环及环境归趋具有重要意义。本文讨论了2018年天津市四季大气颗粒态汞的粒径分布特征及季节性差异,判定了其可能来源,评估了其潜在生态和人体健康风险。结果表明,受初级排放源及活性气态汞的气-粒分配影响,颗粒态汞在PM<0.5、PM0.5~1粒径中明显富集,其环境健康危害一直被低估。大气颗粒态汞的平均浓度为181.1±97.2 pg/m3,冬季浓度较高,可能受人为排放量大、沉降率低、气-粒分配系数Kp与温度成反比因素控制。夏季浓度较低,除受清洁海相气团影响外,天气潮湿,汞的清除作用加大也是重要因素。颗粒态汞来源不同,冬季主要来源于北方燃煤供暖,春秋季与日常工业生产、车辆排放相关,夏季受自然源海相气团影响较大。尽管大气颗粒态汞通过呼吸给人体带来的健康风险较低,但细粒径风险值显著高于粗粒径,且其具有很强的生态环境危害,需要得到高度重视。  相似文献   

12.
利用大流量主动采样器于2008年8月至2009年7月采集了西安城区气态和颗粒态大气样品,研究了大气中多溴联苯醚(PBDEs)的季节变化特征.结果表明,西安大气中总PBDEs(气相+颗粒相)浓度范围为21.38~161.84pg/m3,平均值为66.34pg/m3.大气中PBDEs在冬季污染最严重,颗粒相PBDEs季节变化趋势与总悬浮颗粒(TSP)较为相似,气相PBDEs的季节变化没有颗粒相明显.对PBDEs的总浓度、气相浓度、颗粒相浓度与采样期间气象因素做偏相关分析,发现总浓度和颗粒相浓度均与气压呈显著正相关,与温度呈显著负相关,表明西安大气中PBDEs浓度主要受气压和温度的影响.对西安普通人群的PBDEs吸入暴露量进行计算,并采用BDE-99的吸入量进行人体暴露评估,西安普通儿童和成人对BDE-99总摄入量低于De Winter-Sorkina提出的最大允许摄入量260pg/(kg·d).  相似文献   

13.
利用大流量主动采样器于2008年8月至2009年7月采集了西安城区大气样品,研究了大气中多环芳烃(PAHs)的季节变化特征.结果表明,西安大气中16种美国EPA优控的PAHs(∑PAHs)气固两相总浓度为37~620ng·m-3(年平均为195ng·m-3),具有明显的季节差异,依次为夏季(74ng·m-3)〈春季(106ng·m-3)〈秋季(213ng·m-3)〈冬季(360ng·m-3).气态PAHs以3~4环为主,颗粒态PAHs以5~6环为主.分子组成表明西安大气PAHs主要来自于燃煤和机动车尾气及生物质燃烧的复合源.应用BaP毒性当量因子及健康风险评价模型对西安城区成人和儿童进行PAHs健康风险评价,结果显示成人和儿童的日均暴露剂量分别为24.3×10-6mg·kg-·1d-1和5.6×10-6mg·kg-·1d-1,终身致癌超额危险度分别为7.5×10-5和1.7×10-5,可能造成成人和儿童的预期寿命损失分别约为467.6min和107.5min.  相似文献   

14.
多环芳烃(PAHs)及有机磷阻燃剂(OPEs)种类繁多且具有易挥发性,通过气固分配行为完成气态和颗粒态的转化. 为准确评估天津市津南区PAHs、OPEs和各组分气固分配行为及风险评价,选择16种PAHs及7种OPEs作为研究对象,利用色谱质谱联用技术测定2019—2020年天津市津南区大气环境中的PAHs和OPEs浓度水平,利用气固分配实测及预测模型研究PAHs及OPEs分配行为,并通过健康风险评价模型对其健康风险进行评估. 结果表明:①天津市津南区2019—2020年∑G-PAHs (气态PAHs总和)年均浓度为36.7 ng/m3,PM2.5中∑P-PAHs (颗粒态PAHs总和)年均浓度为7.3 ng/m3;∑G-OPEs (气态OPEs总和)年均浓度为5 142.0 pg/m3,PM2.5中∑P-OPEs (颗粒态OPEs总和)年均浓度为2 752.0 pg/m3. ②研究期间,PAHs气固分配机制受吸收和吸附机制共同影响,低分子量、高分子量PAHs分别受吸附机制、吸收机制影响,而OPEs则主要受有机物吸收机制影响. ③颗粒态的2~3环PAHs、4环PAHs和5~6环PAHs的非致癌风险值占比分别为0.01%~8%、1%~31%和62%~98%,颗粒态的2~3环PAHs、4环PAHs和5~6环PAHs的致癌风险值占比分别为0.2%~1.5%、3%~71%和70%~99%,颗粒态的TNBP (磷酸三丁酯)、TCEP〔三-(β-氯乙基)磷酸酯〕、TCPP〔三(异氯丙基)磷酸盐〕、TPHP (磷酸三苯酯)和TDCPP〔三(1,3 -二氯异丙基)磷酸盐〕的非致癌风险值占比分别为36% (范围为10%~58%)、40% (范围为11%~72%)、45% (范围为13%~67%)、51% (范围为38%~75%)和49% (范围为37%~60%). 研究显示,OPEs的健康风险远低于PAHs,气态OPEs和颗粒态PAHs对人体健康的影响较显著.   相似文献   

15.
西安城区秋季大气中多溴联苯醚的污染特征及来源分析   总被引:3,自引:1,他引:2  
为了评估西安大气中多溴联苯醚(PBDEs)的污染程度,2008年8~10月,利用大流量主动采样器采集了西安城区气态和颗粒态大气样品.分别利用GC-MS和GC/ECD对低溴PBDEs和BDE-209进行分析,12种PBDEs的总浓度(气相+颗粒相)范围为37.43~620.30 pg/m3,平均值为216.28 pg/m...  相似文献   

16.
西安城区大气有机氯农药的污染特征及来源分析   总被引:10,自引:0,他引:10  
采用大流量主动采样器于2008年7—10月对西安城区大气进行采集,共获得颗粒态和气态样品24个,并对其中含有的17种有机氯农药(OCPs)进行了分析.结果表明:西安城区大气中ρ(α-硫丹)和ρ(β-硫丹)最高,分别为260.7和212.0pg m3,ρ(DDTs)(DDTs=o,p′-DDD+o,p′-DDT+o,p′-DDE+p,p′-DDD+p,p′-DDT+p,p′-DDE)为167.4pgm3,ρ(HCHs)(HCHs=α-HCH+β-HCH+γ-HCH)为199.3pgm3,ρ(trans-氯丹)和ρ(cis-氯丹)分别为104.0和97.3pgm3,ρ(六氯苯)为74.9pgm3,且都主要分布在气相中.来源分析表明,西安大气中DDTs受三氯杀螨醇的影响显著,而HCHs则主要来源于林丹的使用残留.α-HCH,HCB,p,p′-DDE及p,p′-DDT主要受污染物长距离传输影响,而γ-HCH,trans-氯丹,cis-氯丹,α-硫丹和β-硫丹主要受采样点周边地表挥发的影响.  相似文献   

17.
青海瓦里关大气中多环芳烃的研究   总被引:4,自引:1,他引:4       下载免费PDF全文
2005年4月2日~5月23日,对瓦里关大气中的气相和颗粒相多环芳烃(PAHs)进行了连续观测.结果表明,总PAHs浓度为7.43~29.96ng/m3,气相PAHs的浓度为7.01~26.10ng/m3,颗粒相PAHs的浓度为0.28~7.84ng/m3,气相中PAHs占总浓度的66.5%~98.8%.气粒分配系数(Kp)与过冷饱和蒸汽压(PL0)呈良好相关性(R2=0.67~0.92),斜率(mr)均>-1.瓦里关大气中PAHs的浓度受温度、风速、大气逆温层、大气长距离迁移等因素的影响.  相似文献   

18.
大气中多环芳烃气/粒分配的不确定性分析   总被引:2,自引:2,他引:0  
于2010年8月10~14日用双层石英膜和双层聚氨酯泡沫(PUF)的方法采集并分析了厦门大学海洋楼顶大气中气态和颗粒态多环芳烃(PAHs),并采用标准误差传递方法对气/粒分配系数(Kp)的不确定度进行了分析.测量结果显示,低分子量PAHs如萘、 苊、 二氢苊和芴在PUF吸附体系中的穿透能力最强,穿透率接近50%;如考虑第一层石英滤膜对气态萘、 苊和二氢苊的吸附影响,则校正后的Kp值比校正前相应的Kp值低1个数量级以上.采用标准误差传递方法得到PAHs气/粒分配系数Kp的不确定度,介于28.14%~50.37%之间,且表现为易挥发和难挥发性PAHs的Kp值皆具有较高的不确定度,而半挥发性PAHs的Kp值的不确定度则较小.Kp值的不确定度来源分析显示,气态PAHs浓度的不确定度的影响最大(方差贡献均值=77.9%),其次为颗粒态PAHs浓度的不确定度(方差贡献均值=22.0%),大气颗粒物浓度的不确定度影响最小(方差贡献均值=0.1%).因此,选择合适的采样系统以获取更加准确的气态PAHs的浓度,是提高PAHs气/粒分配系数准确度的关键.  相似文献   

19.
珠江三角洲空气中多氯联苯污染的区域背景研究   总被引:12,自引:0,他引:12  
选择肇庆市鼎湖山自然保护区作为珠江三角洲地区大气中多氯联苯(PCBs)污染评价的区域性环境背景.研究表明,背景区夏季空气中PCBs的平均浓度为216.94pg/m3,其中气态PCBs的浓度是183.42pg/m3,是颗粒态的5.47倍;PCBs总量的氯数分布以三氯和四氯取代的PCBs为主,两者的总贡献率为86.41%.冬季空气样品中PCBs的总浓度是176.43pg/m3,其中气相中的浓度为123.20pg/m3,仅是颗粒相中浓度的2.31倍.与夏季空气样品不同的是,冬季气相样品中二氯到四氯取代的PCBs浓度仅是颗粒相样品中的2.94倍,几乎是夏季的1/2.与国外研究相比,鼎湖山自然保护区空气中PCBs的浓度很高.  相似文献   

20.
为评估办公楼密集区大气中PBDEs污染程度、同类物分布特征及其健康风险,采集了典型科研园区室外空气样品(颗粒物+气态),利用GC-MS对PBDEs质量浓度进行测定.结果表明,PBDEs在气态、PM_(2. 5)和PM_(10)中质量浓度分别为2. 3~78. 6、14. 4~335. 3和11. 6~431. 7 pg·m~(-3),平均值为21. 7、96. 9和149. 3 pg·m~(-3),BDE-209是颗粒态PBDEs中质量浓度最高的同系物,占PBDEs总量的50%.颗粒物中PBDEs质量浓度均表现为秋季冬季夏季春季,冬季变化显著,夏季相对稳定.三溴联苯醚主要存在于气态中,随溴原子的增加,颗粒态PBDEs单体的含量比重增大.来源分析说明BDE-209的降解是空气中其他PBDEs组分的重要来源.暴露风险分析显示儿童和成人对PBDEs的呼吸摄入量分别为18. 6 pg·(kg·d)~(-1)和7. 1 pg·(kg·d)~(-1),远小于相关研究中推荐的最低观察不良反应水平1 mg·(kg·d)~(-1); BDE-209对成人和儿童的致癌风险值分别为3. 7×10-9和2. 3×10-9,远小于致癌风险限值10-6,表明该区域大气中PBDEs无健康危害.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号