首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
A new analysis approach is developed to predict the temperature in dry drilling. The working rake angle and the working relief angle which the effect of feed is considered at an arbitrary point in the leading cutting edge of a twist drill are developed for the equivalent model. Then finite element models are developed to predict the drilling temperature based on the equivalent model. Commercial finite element codes Abaqus, Deform 2D and Third Wave Systems AdvantEdge have been used. In simulations, different chip separation models and material models are applied in the three codes. And the effect of the laws of drilling velocities and feed rates on the temperature are investigated by the finite element method. Predicted results of the maximum temperatures by three codes are compared with experiments, respectively. Results indicate that the drilling temperature results of simulations have good agreement to the experimental ones, and the errors are all less than 15%.  相似文献   

2.
The aim of this work is to investigate the effect of metal-working fluid (MWF) concentration on the machining responses including tool life and wear, cutting force, friction coefficient, chip morphology, and surface roughness during the machining of titanium with the use of the ACF spray system. Five different concentrations from 5 to 15% of a water-soluble metalworking fluid (MWF) were applied during turning of a titanium alloy, Ti–6Al–4V. The thermo-physical properties such as viscosity, surface tension and thermal conductivity of these concentrations were also measured. The test results demonstrate that the tool life first extends with the increase in MWF concentration and then drops with further increase. At low concentration (e.g., 5%), a lack of the lubrication effect causes to increase in a higher friction at the tool–chip interface resulting in severe chipping and tool nose/flank wear within a short machining time. On the other hand, at high concentration, the cooling effect is less. This increases cutting temperature and a faster thermal softening/chipping/notching of the tool material and higher friction at the tool–chip–workpiece interaction zones resulting in early tool failure. A good balance between the cooling and the lubrication effects seems to be found at the 10% MWF concentration as it offers the best machining performance. However, machining with flood coolant is observed to perform the best in the range of 5–7%.  相似文献   

3.
推导了斜刃倾角取不同数值时,剪切力的计算公式,分析和探讨了在斜刃剪切时,斜刃倾角的大小对剪切力及冲裁件的加工质量的影响。在实际生产中,对于合理选择斜刃倾角的大小,正确地计算剪切力具有重要的指导意义。  相似文献   

4.
陶瓷防热瓦间缝隙气动加热规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
秦强  马建军 《装备环境工程》2013,10(5):42-46,51
在分析缝隙内部流动特征的基础上,利用CFD技术对瓦间缝隙气动加热的参数影响规律进行了研究,着重探讨了来流马赫数、攻角、缝隙宽度、倒角半径及瓦间台阶因素对缝隙内部热流分布的影响。研究结果表明,缝隙内部热流呈U形分布,缝隙内部热流随着马赫数的增大而减小,随着攻角、缝隙宽度、倒角半径、瓦间台阶的增大而增大。  相似文献   

5.
Residual stress profile in a component is often considered as the critical characteristic as it directly affects the fatigue life of a machined component. This work presents an analytical model for the prediction of residual stresses in orthogonal machining of AISI4340 steel. The novelty of the model lies in the physics-based approach focusing on the nature of contact stresses in various machining zones and the effect of machining temperature. The model incorporates: (i) stresses in three contact regions viz. shear, tool-nose-work piece and tool flank and machined surface, (ii) machining temperature, (iii) strain, strain rate and temperature dependent work material properties, (iv) plastic stresses evaluation by two algorithms, S-J and hybrid, (v) relaxation procedure and (iv) cutting conditions. The model benchmarking shows (86–88%) agreement between the experimental and predicted residual stresses in the X- and Y-directions. On the machined surface, the tensile residual stresses decrease with an increase the edge radius and increase with an increase the cutting speed. However, below the surface, the compressive residual stresses increase with an increase the depth of cut. Further, it is observed that the proposed model with hybrid algorithm gives better results at a lower feed rate, whereas with the S-J algorithm, at a higher feed rate.  相似文献   

6.
Residual stress induced by machining is complex and difficult to predict, since it involves mechanical loads, temperature gradients or phase transformation in the generation mechanism. In this work, an experiment with a statistical design for the residual stress tensor was performed to investigate the residual stress profile on a machined surface. In order to understand the generation mechanism of residual stress in machining, three variables and workpiece materials were carefully selected to focus on the mechanical loads and avoid the temperature gradients and phase transformation on the machined surface. The mechanical loads considered here included the chip formation force at the primary shear zone and the plowing force at the tool tip–workpiece contact. Depths of cut and rake angles were selected to alter the chip formation force, and the tool tip radius was designed to emphasize the plowing effect. The workpiece material was aluminum 3003. The experimental results showed that the chip formation force provides basic shapes of the residual stress profile for a machined surface. It decides the depth of the peak residual stress below the surface. However, the plowing force was the dominating effect on the surface residual stress, causing high stresses on the surface. The plowing force can shift the surface stress from tensile to compressive. Additionally, the measured stress tensor proved that in-plane shear stress exists for the machined surface.  相似文献   

7.
人造板甲醛释放影响因素的环境箱试验与模型研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用环境箱试验与数学模型模拟人造板中甲醛的释放过程,探讨温度、湿度、封边处理、材质等因素对甲醛释放的影响.环境箱实验表明,随环境温度增加或湿度增加,甲醛初始释放量增高;人造板封边后甲醛释放率明显减小;3种材质的人造板甲醛释放速率依次为中密度板>刨花板>大芯板.经验衰减模型与物质传输模型的对比分析表明,物质传输模型比衰减模型更有利于解释环境箱试验结果.  相似文献   

8.
Geometric parameters and material properties are the two major categories of factors affecting burr formation in the milling process. Geometric parameters such as tool geometry, workpiece geometry, or process condition influence workpiece edge quality at the tool-chip interface. This study identifies a unified criterion to analyze burr formation for different tool engagements. The criterion exploits the exit order of cutting edges of the tool along the workpiece edge, which essentially includes the 3-D nature of the process. The criterion correlates the cutting mechanism and burr formation using the exit order sequence (EOS) as an approximation of chip flow angle. The impact of different possible exit order sequences on burr formation is analyzed. Previously observed phenomena are explained based on the EOS. Also, experiments are done with three different materials (with different ductilities) to analyze the impact of material properties on burr formation for a given EOS. Although burr sizes are different quantitatively with different material, the ranking of burr size for different EOS remained the same. An algorithm for the prediction of burr formation in face milling based on EOS is developed and tested and validated on two different profiles of an automotive part.  相似文献   

9.
常青 《环境科学学报》2020,40(11):3811-3820
疏水絮凝是天然水中经常发生的现象,也是水处理中常被利用的原理.而疏水作用力则是引起疏水絮凝的最主要原因,具有重要的科学意义和应用价值.在过去30多年里,科学家们从实验测定、数值模拟及理论研究3个方面做了大量的研究,使人们对疏水作用力有了一定的认识,但由于问题的复杂性及研究所具有的高难度,目前疏水作用力的理论仍不够完善.为有助于进一步研究,本文综述了疏水作用力的一些特性及影响因素,如疏水作用力的实验规律、疏水作用的距离范围、疏水作用力的粒度界限、表面接触角对疏水作用力的影响、电解质对疏水作用力的影响及温度对疏水作用力的影响等.对大量文献的分析归纳表明,实验规律有单指数函数模型、双指数函数模型及幂函数模型,作用距离范围分为短程作用力及长程作用力,微粒半径大于临界半径时才可产生疏水作用力,疏水作用力随接触角的增大而增大,电解质对疏水作用力基本无影响,关于温度的影响,迄今尚有不同的看法和争论,还需更进一步的研究.  相似文献   

10.
通过对压套零件的冲压工艺分析,省去外缘修边工序。外缘翻边时,利用板料的塑性平面各向异性在拉深件凸缘处产生的凸耳,翻边后形成图纸要求的凸、凹R50mm的外形尺寸,成功地用四套模具生产出摩托车离合器压套零件,降低了模具成本,提高了材料利用率。  相似文献   

11.
Single-point diamond turning (SPDT) experiments conducted on single-crystal 6-H silicon carbide (SiC) have shown chip formation similar to that seen in the machining of metals. The ductile nature of SiC is believed to be the result of a high-pressure phase transformation (HPPT), which generates a plastic zone of material that behaves in a metallic manner. This metallic behavior is the basis for using AdvantEdge, a metal machining simulation software, for comparison to experimental results.Simulations (2D) were carried out by matching the SPDT experimental conditions, which were conducted at nanometer (nm) depths of cut and varying tool rake angles. The experiments were performed by machining the circumference of the single-crystal wafer, thereby conforming to a 2D orthogonal cut (plunge cuts, or an infeed, achieved the depth of cut, and no cross feed was incorporated).The cutting and thrust forces generated from the experiments under ductile cutting conditions compared favorably with the simulation. As the depth of cut is decreased (250 nm, 100 nm, and 50 nm), the experimental conditions transition from a brittle to ductile behavior, with the 50 nm cuts being dominated by the ductile regime. Thus, the forces from the experiment and the simulations are in much better agreement for the smaller depths of cut, that is, below the critical depth of cut that establishes the ductile-to-brittle transition, as ductile conditions exist in both the simulation and experiments. The differences in the results that do arise are assumed to be primarily due to a springback of the material leading to increased rubbing on the flank face.  相似文献   

12.
An experimental investigation was conducted to determine the effect of tool cutting edge geometry on workpiece subsurface deformation and through-thickness residual stresses for finish hard turning of through-hardened AISI 52100 steel. Polycrystalline cubic boron nitride (PCBN) inserts with “up-sharp” edges, edge hones, and chamfers were used as the cutting tools in this study. Examination of the workpiece microstructure reveals that large edge hone tools produce substantial subsurface plastic flow. Flow is not observed when turning with small edge hone tools or chamfered tools, and the workpiece microstructure appears random for these cases. Examination of through-thickness residual stresses shows that large edge hone tools produce deeper, more compressive residual stresses than are produced by small edge hone tools or chamfered tools. Explanations for these effects are offered based on assumed contact conditions between the tool and workpiece.  相似文献   

13.
目的 掌握船舶在极地低温极端环境中航行时,船舶艏部结构遭遇冰山等极端载荷作用下的主要参数对结构损伤演化过程的影响,揭示船舶艏部结构的失效机理。方法 以船舶艏部结构为研究对象,基于数值仿真方法,开展不同碰撞场景、环境温度、撞击速度、冰体塑性应变、船体材料本构模型、撞击角度等参数对结构损伤的影响研究。结果 建立了数值仿真简化模型,获得了不同参数对结构损伤的影响规律。结论 材料模型对船体结构损伤的影响较小。随着航速增加、撞击角度增大,船体损伤范围增大。随着船体材料性能增强,撞击区刚度增大,船体结构损伤范围减小。形成的损伤演化模拟方法可为极地极端环境下船舶结构损伤演化分析提供技术手段。  相似文献   

14.
This paper describes an analytical solution for turning and milling stability that includes process damping effects. Comparisons between the new analytical solution, time-domain simulation, and experiment are provided. The velocity-dependent process damping model applied in the analysis relies on a single coefficient similar to the specific cutting force approach to modeling cutting force. The process damping coefficient is identified experimentally using a flexure-based machining setup for a selected tool-workpiece pair (carbide insert-AISI 1018 steel). The effects of tool wear and cutting edge relief angle are also evaluated. It is shown that a smaller relief angle or higher wear results in increased process damping and improved stability at low spindle speeds.  相似文献   

15.
16.
The generation of fine dust during dry machining is a serious problem both for the environment and for workers. During machining, the fine dust particles generated remain suspended in the air for long periods, during they can be inhaled by workers. The quantity of dust generated is influenced by factors such as material type and heat treatment condition, temperature, and the associated chip formation mode. The aim of this work is to discover how these parameters influence dust generation during dry machining, which could lead to the control of dust production in the future. The materials tested are the wrought 6061 and foundry A356 aluminum alloys and 70-30 brass. It is found that pre-cooling a workpiece material leads to changes in chip formation, in the reduction of cutting forces, and hence in a reduction in fine dust generation by at least 70%, depending on the materials and cutting conditions used. Also, pre-heating the workpiece increases chip ductility and dust production levels.  相似文献   

17.
A new approach to theoretical modeling and simulation of face milling forces is presented. The present approach is based on a predictive machining theory in which machining characteristic factors in continuous cutting with a single-point cutting tool can be predicted from the workpiece material properties, tool geometry, and cutting conditions. The action of a milling cutter is considered as the simultaneous work of a number of single-point cutting tools, and the milling forces are predicted from input data of workpiece material properties, cutter parameters and tooth geometry, cutting condition, cutter and workpiece vibration structure parameters, and types of milling. A predictive force model for face milling is developed using this approach. In the model, the workpiece material properties are considered as functions of strain, strain rate, and temperature. The ratio of cutter tooth engagement over milling is taken into account for the determination of temperature in the cutting region. Cutter runout is included in the modeling for the chip load. The relative displacement between the cutter and workpiece due to the cutter and workpiece vibration is also included in the modeling to consider the effect on the undeformed chip thickness. A milling force simulation system has been developed using the model, and face milling experimental tests have been conducted to verify the simulation system. It is shown that the simulation results agree well with experimental results.  相似文献   

18.
Surface modification by material transfer during electrical discharge machining (EDM) has emerged as a key research area in the last decade. Material may be provided to the machined surface of the workpiece by the eroding tool electrode or by using powder-mixed dielectric. Breakdown of the hydrocarbon dielectric contributes carbon to the plasma channel which may also cause surface modification. The present work has investigated the response of three die steel materials to surface modification by EDM method with tungsten powder mixed in the dielectric medium. Taguchi experimental design technique was used to conduct the experiments on each work material independently. Peak current, pulse on-time and pulse off-time were taken as variable factors and micro-hardness of the machined surface was taken as the response parameter. X-ray diffraction (XRD) and spectrometric analysis show substantial transfer of tungsten and carbon to the workpiece surface and an improvement of more than 100% in micro-hardness for all the three die steels. Presence of tungsten carbide (WC and W2C) indicates that its formation is taking place in the plasma channel. Machining parameters for the best value of micro-hardness for each work material were found to be the same.  相似文献   

19.
A micro-scale machine tool (mMT) topology is developed for turning hardened steel bearing components. The topology utilizes the principle of leverage to increase accuracy and stiffness and incorporates decoupling to reduce unwanted motion of the tool. Performance specifications required that the static stiffness is at least 10 N/μm and dynamic stiffness is at least 30 N/μm in all directions. The kinematics for the topology are developed to enable control over the position and orientation of the tool tip. The effect of the topology on rake angle is determined and the topology is adjusted so as to minimize the rake angle variation during the cut. Cutting tests are performed to determine cutting parameters for achieving a low surface roughness and to estimate the accuracy of the machine. Tests show that the hard-turning mMT can achieve surface roughness below 25 nm Ra, diametrical accuracy of 1 μm and peak-to-valley roundness deviation (RONt) below 0.35 μm.  相似文献   

20.
The paper presents a micro dimple machining on a cylinder surface with a two-flutes ball end mill. When the cutter axis is inclined and the depth of cut is less than the tool radius, non-cutting time, during which neither of the two cutting edges contacts the workpiece, appears in a rotation of the cutter. The rotation of the workpiece and the feed of the tool are controlled so that the cutting areas do not overlap each other. In order to incline the tool with respect to the tangential direction on the cylinder surface, the tool is located at a position oriented at 45° from the top of the cylinder. An analytical model is presented to control the shapes of the dimples with the cutting parameters. The presented machining is verified in cutting tests with measuring the shape and the profile of the dimples. Pre-machining operations are conducted to have a high cylindricity of the workpiece in longitudinal turning and polishing. The cutter runout of the tool is also eliminated by adjusting the orientation and the position of the tool in the collet chuck with measuring the cutting force. The micro dimples are machined accurately as they are simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号