首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 104 毫秒
1.
针对我国农药污染地块修复过程中异味扰民的突出环境问题,开展地块土壤中异味物质的筛查,明确异味物质在土壤中的分布至关重要. 本文以某典型农药污染地块土壤为研究对象,通过对土壤气样品全扫描分析、异味清单比对、异味活度值计算、累计异味贡献率分析等方法,筛查确定土壤中主要的异味物质;基于筛查结果,通过土壤样品采集,应用GC-MS分析,查明土壤中主要异味物质的污染程度和空间分布. 结果表明:①该典型农药污染地块土壤中涉及二甲基硫醚、二甲基二硫醚、甲苯、三氯乙烯、二硫化碳、氯仿、邻-二甲苯、间/对-二甲苯、苯、噻吩、甲基环己烷、正己烷、四氯乙烯、乙苯和四氯化碳15种异味物质,异味活度值分别为7 287.5、2 755.6、714.8、676.7、438.5、294.5、229.4、74.7、55.4、50.0、49.6、18.9、3.1、1.7和0.6. ②累计异味贡献率超过90%的主要异味物质为二甲基硫醚、二甲基二硫醚、甲苯和三氯乙烯,四者最高含量分别为10.9、48.5、797.7和33 000.0 mg/kg,主要分布在除草剂车间、菊酯车间、敌敌畏车间、氧化制氯车间、百草枯车间和氧乐果车间等生产区域. ③异味物质含量普遍随土壤埋深的增加表现为先增后降,主要分布在1.8~6.8 m的粉质黏土和6.8~10.6 m的粉土中. 研究显示,农药污染地块土壤中异味物质种类复杂,可采用累计异味贡献率分析法进行筛查;地块土壤中异味物质的空间分布主要与生产过程、土壤埋深和土壤性质有关.   相似文献   

2.
以某化工退役地块为例,从化学浓度及异味贡献两个角度对比了典型土壤气样品中苯系物的污染特征;并从嗅觉效应的角度,研究推导了基于嗅觉效应的主要致嗅组分土壤安全阈值,为污染地块异味风险控制提供理论依据.该地块土壤气组分中以苯浓度最高,其次为氯苯,分别占苯系物总质量浓度的67.3%和10.1%.从异味贡献来看,核心致嗅成分为乙苯,占土壤气总异味活度值的53.2%;其次为甲苯,异味贡献平均占比为14.1%.基于地块未来公园绿地规划,构建了长期及短期两种异味暴露场景下的概念模型和计算公式.经分析计算,短期(涉及建设开挖)的异味暴露风险较长期异味暴露风险更需引起关注.土壤中关键致嗅因子乙苯、甲苯、苯、间/对-二甲苯的土壤异味安全阈值分别为12.9、35、559.3和60.7 mg·kg-1.将计算所得的安全阈值与现行土壤标准相较,以甲苯和间/对-二甲苯的反差最为显著.研究结果表明:存在异味的污染地块,应同时兼顾考虑毒理学健康效应和基于嗅觉效应的安全阈值,确保污染地块的安全利用.  相似文献   

3.
为研究不同异味源的感官特性以及不同行业特征污染物的排放差异,以卷烟厂、烘培坊、烤漆厂为研究对象,采用愉悦度9级度量法,测定源样品不同稀释倍数(5~6个浓度梯度)下的愉悦度等级,绘制3种典型异味源愉悦度-臭气浓度指数特征曲线,并进行回归分析,同时筛选出3个典型异味源的特征污染物(烤漆厂的特征污染物为乙酸乙酯、对二乙苯、乙苯、间二甲苯、乙酸丁酯,卷烟厂为乙醇、萘、2-丁酮、柠檬烯、丙烷,烘培坊为乙醇、柠檬烯、α-蒎烯、甲苯、丙酮),并建立了异味评价干扰潜力的数学模型.结果表明:3种典型异味源的愉悦度与臭气浓度指数之间的关系均符合二次多项式模型,卷烟厂和烤漆厂异味源的愉悦度均为负值,并且厌恶程度随臭气浓度的增大而增强;而烘焙坊异味源的愉悦度为正值.当愉悦度等级为-2时,卷烟厂和烤漆厂对应的臭气浓度分别为30和26.干扰潜力的强弱是由臭气浓度和愉悦度2个因素直接决定的,烤漆厂的干扰潜力为-14.48,卷烟厂为-14.17,烘培坊为11.77.研究显示,愉悦度与臭气浓度指数间量化关系模型以及异味源干扰潜力评估模型的建立,可为异味源的分类分级以及异味源环境影响标准的制订提供科学依据.   相似文献   

4.
硝基清漆膜厚度对硝基清漆VOCs释放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用自制的小型环境测试舱,研究了硝基清漆膜厚度对挥发性有机物(VOCs)释放的影响.漆膜厚度分别为296,508,715,799,960μm,测试条件为:温度为25.0℃,相对湿度为23.9%,空气流量为0.75m3/h,空气流速为3.4cm/s,支持板为不锈钢盘.采用真空采样罐采集舱出口空气,用气相色谱(GC-FID)分析测试.确定了5种主要VOCs(甲基环乙烷、甲苯、乙苯、间/对二甲苯和邻二甲苯)的浓度,并以一阶衰减模型对浓度进行模拟计算得到释放速率.结果表明,漆膜厚度并不影响VOCs的峰值浓度和初始释放速率,但漆膜越厚,VOCs的浓度衰减越慢,衰减速率越小.  相似文献   

5.
颜鲁春  刘杰民  付慧婷  孙媛  林文辉 《环境科学》2013,34(12):4743-4746
由挥发性有机污染物(VOCs)等引起的恶臭污染已经成为一个严重的环境问题,而污染物种类繁多,浓度差异大和物质间相互作用规律复杂等因素,对异味强度等感官评价研究造成极大困难.本研究针对室内环境,选取典型挥发性有机污染物组成多种异味混合物,6名专业嗅辨员组成嗅觉评价小组,分别评价异味混合物和相应各组分物质单独存在时的异味强度,分析混合物中各组分含量与混合物整体异味强度之间的联系.结果表明,当混合物中某物质异味活度(odor activity value,OAV)的自然对数值占混合物总量的比例小于20%时,其对混合物的异味强度贡献基本为零.利用该方法预先忽略多组分异味混合物中的部分物质,可以在异味物质相互作用规律和异味感官评价等研究中起到重要简化作用.  相似文献   

6.
为深入研究橡胶制品行业异味污染成因,采用仪器和感官分析方法对轮胎企业、橡胶板管带企业、橡胶零件企业、日用及医用橡胶制品企业和再生橡胶制品企业的VOCs(挥发性有机物)和异味物质进行定性定量分析.应用气味活度值法确定炼胶、硫化、脱硫工序特征异味物质,使用聚类分析、主成分分析和综合评价法筛选橡胶制品行业前20项优先控制污染物.结果表明:①炼胶、硫化、脱硫工序的TVOC(总挥发性有机物)平均排放浓度分别为15.723 5、4.660 9、98.816 5 mg/m3.②共识别出150种VOCs和异味物质,主要包括正己烷、正庚烷等脂肪烃,苯乙烯、二甲苯等芳香化合物,丙酮、甲基异丁酮等含氧化合物,以及二甲二硫、二硫化碳等有机硫化物.③依据GB 14554-1993《恶臭污染物排放标准》,脱硫工序及所有采样企业厂界臭气浓度值均超标,其他生产工序的有组织废气的臭气浓度均达到排放标准.④行业主要致臭物质包括异丁醛、异戊醛、己基硫醇、丁基硫醇、苯乙烯和三甲胺等.⑤行业前20项优先控制污染物包括苯乙烯、甲基环己烷、三甲胺、二硫化碳、1,2,4-三甲苯、甲基异丁酮、对二甲苯、乙醛、羰基硫、乙苯等.研究显示:炼胶、硫化工序TVOC平均排放水平较低,主要致臭物质种类基本相同;再生橡胶制品脱硫和精炼工序的TVOC排放水平较高,异味污染严重,需注重产业结构调整、改进行业技术工艺及加强行业标准规范化.   相似文献   

7.
城市大气挥发性有机物(VOCs)是二次有机气溶胶(SOA)的重要前体物,而SOA又是城市大气细粒子的重要组成成分,对大气细粒子PM2.5的贡献不容忽视。文章综述了国内外城市大气中VOCs排放源以及来源解析的研究现状。研究结果表明:城市大气挥发性有机物(VOCs)排放源中人为源来自汽车尾气、燃料挥发、石油化工、涂料的使用和生物质燃料燃烧等,天然源来自植物排放;主要的排放源是汽车尾气、燃料挥发、涂料的使用。城市大气挥发性有机物(VOCs)来源解析方法主要为PMF、PCA/APCS受体模型。天然源主要来自于植物排放,其中排放量最大的VOCs是异戊二烯和单萜烯;人为源中最主要VOCs为苯和甲苯等芳香烃以及乙烯、异戊烷、异丁烷、丙烷、异丁烷、乙烷、正丁烷等低碳烷烃烯烃。这为进一步开展VOCs源解析研究提供参考。同时发现天然源中对SOA贡献最大的是异戊二烯和单萜烯,人为源中芳香烃(甲苯、乙苯、间/对二甲苯、甲苯、乙苯、1,2,4-三甲苯、邻二甲苯、1,3-二乙苯)、烯烃(蒎烯)、烷烃(正十一烷)对SOA的生成有着巨大的贡献。  相似文献   

8.
上海某石化园区周边区域VOCs污染特征及健康风险   总被引:9,自引:8,他引:1  
盛涛  陈筱佳  高松  刘启贞  李学峰  伏晴艳 《环境科学》2018,39(11):4901-4908
为了解石化周边区域大气VOCs污染特征,使用在线GC-FID监测仪于2017年10月对上海市某近石化周边居民区大气VOCs进行了为期1个月的连续观测;通过最大增量反应活性(MIR)法估算了VOCs对臭氧(O_3)生成的贡献,并进行了健康风险研究.结果表明,观测期间VOCs总质量浓度的范围16. 4~1 947. 8μg·m~(-3),平均浓度为40. 7μg·m~(-3);烷烃、烯/炔烃和芳香烃的平均占比分别为66. 2%、25. 9%和7. 9%. VOCs总浓度日变化特征呈现单峰型变化,峰值浓度为127. 9μg·m~(-3)(07:00). VOCs总浓度的平均臭氧生成潜势(OFP)为249. 7μg·m~(-3),烯、炔烃对OFP的贡献最高,达到153. 4μg·m~(-3);丙烯、反-2-丁烯、乙烯是关键的活性组分.己烷、苯、甲苯、乙苯、邻-二甲苯和间/对-二甲苯的健康风险较小.  相似文献   

9.
为了解石化周边区域大气VOCs污染特征,使用在线GC-FID监测仪于2017年10月对上海市某近石化周边居民区大气VOCs进行了为期1个月的连续观测;通过最大增量反应活性(MIR)法估算了VOCs对臭氧(O3)生成的贡献,并进行了健康风险研究.结果表明,观测期间VOCs总浓度的范围16.4~1947.8μg·m-3,平均浓度为40.7μg·m-3;烷烃、烯/炔烃和芳香烃的平均占比分别为66.2%、25.9%和7.9%.VOCs总浓度日变化特征呈现单峰型变化,峰值浓度为127.9μg·m-3(07:00).VOCs总浓度的平均臭氧生成潜势(OFP)为249.7μg·m-3,烯、炔烃对OFP的贡献最高,达到153.4μg·m-3;丙烯、反-2-丁烯、乙烯是关键的活性组分.己烷、苯、甲苯、乙苯、邻-二甲苯和间/对-二甲苯的健康风险较小.  相似文献   

10.
为研究煤化工产业园区挥发性有机物(VOCs)污染特征及其对大气细颗粒物(PM2.5)和臭氧(O3)的贡献,本研究于2021年夏季利用气相色谱/质谱联用仪在某大型煤化工产业园区开展了环境空气115种VOCs的在线监测研究,分析了VOCs的浓度水平、组成特征、日变化特征、潜在来源及其对O3和PM2.5中二次有机气溶胶(SOA)的生成贡献. 结果表明:①观测期间,园区站点VOCs的平均体积分数为89.32×10?9±50.57×10?9,显著高于该园区所在城市的城区站点VOCs浓度水平. ②含氧VOCs (OVOCs)是该园区VOCs的主要特征污染物,占总VOCs体积分数的48.2%,乙醇、丙醛和甲醛是体积分数排名前三的物种. ③VOCs的臭氧生成潜势(OFP)为595.64 μg/m3,各组分对O3贡献潜势的大小表现为OVOCs>烯烃>芳香烃>烷烃>卤代烃>含硫VOC>炔烃. OFP排名前十的物种均为OVOCs、烯烃和芳香烃,其中丙醛对OFP的贡献占比最高,占总OFP的22.2%. ④间/对-二甲苯、邻二甲苯和乙苯等苯系物对二次有机气溶胶生成潜势(SOAFP)的贡献突出,其中间/对-二甲苯的SOAFP最大,占总SOAFP的29.6%,主导了SOA生成. 研究显示,煤化工产业园区中丙醛和甲醛等OVOCs、顺-2-丁烯等烯烃以及间/对-二甲苯与邻二甲苯等芳香烃对大气复合污染贡献较大,是开展PM2.5和O3污染协同控制重点关注的物种.   相似文献   

11.
田秀英  蔡强  刘锐  张永明 《环境科学》2013,34(2):462-467
根据上海某土壤与地下水污染修复现场情况,应用自主研发的电子鼻系统(iSA-M1)分别对未修复及修复过程中的土壤和地下水、修复场地上空及周边空气中的VOCs和恶臭类气体进行检测.结合前期研究所得TPI和OPI公式,求得各点的值,并将其用图表示.结果表明:①修复后TVOC和恶臭的浓度总体呈下降趋势;②在土壤和地下水修复过程中,VOCs和恶臭的挥发受气象要素和作业的影响,其浓度在总体下降的过程中伴随着阶段性上升现象;③结合GIS技术,电子鼻能初步用于评估土壤和地下水修复现场造成的空间污染情况及对周围居民产生的影响.但造成影响程度的具体细化分级还需要进一步研究.  相似文献   

12.
挥发性有机物(VOCs)是填埋场重要的恶臭源之一.为了深入了解造成填埋场恶臭的VOCs及其臭气强度情况,在2014年7—8月采用固相微萃取(SPME)-气相色谱(GC)-质谱(MS)联用法测定了北京市安定生活垃圾卫生填埋场内各代表性地点的VOCs.共确认了48种化合物,包括烷烃、烯烃、芳香烃、环烷烃、萜类、酯类、醛酮类、卤代烃、醇类及含硫化合物和含氮化合物.烷烃的种类最多,达到13种,其次是芳香烃,为9种.以内标法和外标法相结合测定了其中35种物质的含量,发现浓度在0.05~40 mg·m~(-3)之间.在厂区入口和作业面浓度最高的VOC是2,2,4,6,6-五甲基庚烷,在沼气干管是甲苯.从实际经验和臭气强度出发,建立了一种恶臭物质筛选方法,即首先以检出频次和各地点浓度比值筛选出可能的恶臭物质,然后由臭气强度确定最终的恶臭物质.筛选结果表明,填埋场内的恶臭VOCs是对伞花烃、对二甲苯、乙苯、甲苯和邻二甲苯,其中对伞花烃和对二甲苯对恶臭贡献尤为显著.这些恶臭VOCs浓度之间呈现出显著的相关关系,表明这些物质均来源于填埋场内生活垃圾的降解过程.  相似文献   

13.
周胜  黄报远  陈慧英  林少雄 《环境工程》2020,38(1):42-47,92
系统分析了珠三角城市群PM2.5、O3和挥发性有机物(VOCs)的污染特征,并筛选出对二次有机气溶胶(SOA)和O3影响较大的敏感性组分。结果显示:珠三角城市群PM2.5和O3浓度的季节变化具有明显差异,PM2.5和O3分别在1月和10月出现浓度最高值。珠三角城市群VOCs主要以烷烃为主,占比为64.2%,其次为芳香烃和烯烃,含量较高的组分为丁烷、异戊烷、异丁烷和环己烷。SOA生成潜势贡献主要以芳香烃为主,占比为78.5%,其中甲苯、间,对-二甲苯和乙苯的SOA生成潜势最大。O3生成潜势主要以烯烃为主,占比为42.3%,其次为芳香烃(34.2%)和烷烃(23.5%),其中丙烯、异戊二烯和1-丁烯的O3生成潜势最大。为有效缓解珠三角城市群PM2.5和O3污染,建议优先对机动车尾气、溶剂挥发、涂料使用和石化行业的VOCs敏感组分进行控制。  相似文献   

14.
典型工业恶臭源恶臭排放特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
恶臭污染具有主观性和复杂性特点,结合使用仪器分析和嗅觉方法,可以从成分和感官两方面充分反映恶臭污染特征.本文参考USEPA TO14A和GB/T 14675-93方法,选择天津滨海新区内的6个不同类型的工业恶臭源,包括制药、喷漆、炼油、石化、树脂合成和橡胶,采集了各类源工艺流程中通过有组织方式排放的恶臭废气,测定了废气的感官臭气浓度并定量分析了其中的恶臭VOCs物质.使用臭气浓度、恶臭指数及统计学方法进行研究,结果发现,炼油源和制胶源的废气具有非常严重的感官刺激性.甲硫醇等硫化物是炼油源和制胶源的主要特征恶臭物质;苯乙烯和甲苯分别是合成树脂源和喷涂源的特征恶臭组分;对苯二甲酸(PTA)源和制药源属于混合型恶臭源.甲苯是喷漆源和制药源的标识组分;二硫化碳是制胶源的标识组分;间,对-二甲苯可以用来标识石化PTA污染源;炼油源的标识组分为三氯乙烯、氯乙烷和1,2-二溴乙烷;苯乙烯是合成树脂源的标识组分.  相似文献   

15.
挥发性有机物(volatile organic compounds,VOCs)普遍存在于工业污染场地,因其易迁移和难降解的特性而受到广泛关注.修复VOCs污染场地时通常存在拖尾、反弹和二次污染物释放的现象,限制了对VOCs的修复效率,这些现象均与修复过程中VOCs在相间的非平衡态迁移有关,但目前仍缺乏定量化的研究.基于此,选择四氯化碳为典型的VOCs,采用沙箱试验,探究了VOCs的相间非平衡态迁移在表面通风、土壤挖掘以及热脱附和气相抽提联用技术应用过程中对土壤修复的影响.结果表明:在表面通风和土壤挖掘过程中能产生较为显著的二次污染物释放现象;在热脱附和气相抽提联用技术的修复过程中能产生拖尾现象,而在修复结束后则会产生反弹现象,这些现象均为相间非平衡态迁移的表现形式.其中,在表面通风、土壤挖掘以及热脱附和气相抽提联用技术修复过程中,四氯化碳释放通量的最大反弹幅度分别为0.69、2.80和64.00倍,表明相间非平衡态迁移对热脱附和气相抽提联用技术产生的影响最大.研究显示,相间非平衡态迁移在不同的土壤修复工艺中均有体现,严重限制了土壤修复的效率,需要引起土壤修复工作者的高度重视.   相似文献   

16.
典型工业无组织源VOCs排放特征   总被引:15,自引:0,他引:15  
选取制药厂、酿酒厂和橡胶厂分析了不同工艺过程VOCs排放特征.结果表明,制药厂安乃近合成和氨基比林合成的VOCs排放以苯、甲苯和苯乙烯等苯系物为主,乙酰氨基酚合成的VOCs排放主要以C4~C6的烷烃为主,酿酒厂和橡胶厂VOCs排放均以甲苯、乙苯和间,对二甲苯为主.采用最大增量反应活性法对臭氧生成潜势进行分析,制药厂安乃近合成和氨基比林合成VOCs单位臭氧生成潜势以苯、甲苯等苯系物为主;乙酰氨基酚合成以顺-2-丁烯、甲苯和异戊烷为主;酿酒厂、橡胶厂以甲苯、乙苯、间,对二甲苯为主.同时采用阈稀释倍数对VOCs进行恶臭分析,制药厂和酒厂无组织排放VOCs恶臭污染程度较轻,橡胶厂的伸缩装置车间和硫化车间的无组织VOCs排放存在一定程度的恶臭污染.  相似文献   

17.
邯郸市秋季大气挥发性有机物污染特征   总被引:12,自引:1,他引:11       下载免费PDF全文
大气中VOCs(volatile organic compounds,挥发性有机物)是形成O3和二次有机气溶胶的重要前体物.通过对2017年10月1-31日邯郸市秋季环境空气中56种VOCs污染物进行在线监测,结合PM2.5、O3、NOx等污染物质量浓度和气象数据,分析了邯郸市VOCs质量浓度水平、时间变化特征、化学反应活性和主要来源.结果表明:邯郸市ρ(VOCs)变化范围较大,为49.1~358.4 μg/m3,平均值为(102.2±45.8)μg/m3,VOCs的主要组分为烷烃和芳烃.ρ(VOCs)与ρ(PM2.5)、ρ(NOx)均有很强的相关性,相关系数分别为0.8和0.7;而ρ(NOx)与ρ(O3)呈明显的负相关性,相关系数为-0.7.邯郸市VOCs中各类组分化学反应活性大小依次为烯烃>芳烃>烷烃>炔烃,并且国庆期间(10月1-7日)VOCs化学反应活性小于非国庆期间(10月8-31日),烯烃和芳烃对O3的产生占主导地位.应用主因子分析法对邯郸市VOCs来源进行解析发现,溶剂使用和燃料挥发源、汽油车排放源、工业源、柴油车排放源和燃烧源是VOCs的主要来源,其方差贡献率分别为36.7%、15.5%、8.0%、6.6%、5.1%.研究显示,减少邯郸市大气中ρ(VOCs)应以控制溶剂使用和燃料挥发源、交通排放源(汽油车排放源和柴油车排放源)为主.   相似文献   

18.
为了解钢铁企业的大气污染特征,使用在线监测仪器于2016年7月对某典型钢铁企业VOCs(挥发性有机化合物)、PM2.5和NMHC(非甲烷烃)等污染物进行观测,同时基于FAC(气溶胶生成系数)估算了该区域的SOA(二次有机气溶胶)生成潜势.结果表明:观测期间ρ(总VOCs)为(106.08±63.81)μg/m3,与ρ(NMHC)(以C计)的相关系数(R2)达到了0.8(P < 0.05)以上;VOCs中主要类别为烷烃和芳烃;ρ(O3)超标期间的ρ(苯)和ρ(甲苯)分别比ρ(O3)未超标时间段高47.0%和37.2%,并且高ρ(总VOCs)期间芳烃占比高达46.0%,这可能与钢铁企业在炼焦时苯系物(苯、甲苯和二甲苯)排放有关.ρ(总VOCs)、ρ(NMHC)、ρ(烷烃)、ρ(芳烃)和ρ(乙炔)均呈早晚高峰值的日变化特征,而ρ(烯烃)由于异戊二烯受天然源排放影响,呈午间单峰值的特征.观测期间的SOA生成潜势为2.54 μg/m3,较城区高出76.4%,显示钢铁企业SOA对PM2.5具有一定贡献;其中芳烃对SOA生成贡献高达97.2%,主要贡献组分包括苯、间/对-二甲苯、乙苯、苯、邻-二甲苯.研究显示,钢铁企业VOCs污染治理应重点控制苯系物,同时烷烃的排放也不容忽视.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号