首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
收集并处理了遥感反演的气溶胶光学厚度(AOD)、归一化植被指数(NDVI)和气象数据,采用贝叶斯最大熵(BME)结合线性混合模型(LME)估算了2015年10月~2016年3月珠江三角洲地区近地表旬平均PM2.5质量浓度.结果表明,LME+BME模型的预测精度比LME模型有较大提升,LME+BME模型的交叉验证结果R2为0.751,RMSE为6.886μg/m3,MAE为4.52μg/m3,而LME模型的交叉验证结果R2为0.703,RMSE为7.546μg/m3,MAE为4.927μg/m3.空间分布看,PM2.5高浓度地区主要集中在广州、佛山、东莞等地区,低浓度地区主要集中在肇庆、惠州、江门的南部等地区;时间变化看,PM2.5污染比较严重的时间为2015年10月中旬、2015年11月下旬以及2016年3月下旬,而2015年10月上旬、2015年12月上旬和2016年1月下旬污染则相对较低.  相似文献   

2.
利用源清单法对北京主城区的人为热进行研究,得出不同热源排放总量与时空特征并进行小区验证.结果表明:主城区的人为热年排放总量为1.11×1018J/a,为太阳辐射总量的8.1%,其中建筑排热占人为热排放的45.3%,交通和工业部分分别占30.1%、20.2%;人为排热总量最大的为朝阳和海淀区,占主城区总量的52.2%,最少的东城和大兴区均占7.7%;主城区平均排放强度为14.55W/m2,最大为西城区82.30W/m2,大兴区仅为2.61W/m2;人为热排放高值区多集中于北二环与北四环内,约为60~100W/m2,少数街道和地区排热在150W/m2以上,最高排热强度272~376W/m2为北京CBD区,人为热结果与遥感反演的地表温度有一定的正相关关系;交通排热的月变化不显著,日变化系数在09:00、18:00左右较高,建筑排热在不同季节不同时刻均有明显差别,出现“双峰”现象,同人们作息规律相一致.  相似文献   

3.
NH3针对传统近地面NO2浓度空间模拟过程中NO2浓度与其影响要素之间关系的复杂非线性机制解释不充分的缺陷,本研究基于随机森林(RF)算法、融合多源地理要素开展了近地面NO2浓度空间分布模拟研究.以卫星OMI对流层NO2柱浓度数据和多源地理要素(道路交通、气象因子、土地利用/覆盖、地形高程、人口数量)为输入变量,近地面NO2浓度为输出变量,利用RF算法构建近地面NO2浓度反演模型.通过对比地面观测数据与传统土地利用回归模型(LUR)检验RF模型的有效性,基于所构建的最优RF模型在不同时间尺度下模拟分析中国大陆地区近地面NO2浓度空间分布特征.结果表明:(1)集成多源地理要素的RF回归模型精度高,月均模型整体拟合度R2 0.85,RMSE 6.08μg/m3,交叉验证的R2 0.84,RMSE 6.33μg/m3,显著高于LUR模型(拟合R2 0.53,RMSE 10.48μg/m3,交叉验证的R2 0.53,RMSE 10.49μg/m3); (2)地面NO2浓度与预测变量呈现显著的复杂非线性与时间尺度依赖关系,卫星OMI柱浓度对模型影响程度最大,重要性指标IncMSE介于97.40%~116.54%,多源地理特征变量对RF模型同样具有不可忽视的贡献力(IncMSE在23.34%~47.53%之间);(3)中国大陆地区NO2污染程度较高,年均模拟浓度为24.67μg/m3,存在明显季节性空间差异,NO2浓度冬季(31.85μg/m3) > 秋季(24.86μg/m3) > 春季(23.24μg/m3) > 夏季(18.75μg/m3),呈现以华北平原为高值中心、向外围逐渐减轻的空间分布格局.较已有研究揭示对流层NO2柱浓度宏观分布特征,本研究对近地面NO2污染特征的研究成果对于合理制定污染防控策略、降低居民暴露健康损害具有指导意义.  相似文献   

4.
针对京津冀及周边"2+26"城市秋冬季不同大气污染治理措施的减排量进行核算,结果表明,2017~2018年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为43.26,20.63,18.36,28.00和47.31万t,2018~2019年秋冬季"2+26"城市SO2,NOx,VOCs,PM2.5和PM10的总减排量分别为16.68,18.11,11.03,17.04和25.33万t.基于此,采用CAMx模型对各项措施的减排效果进行模拟评估,采取措施后,2017~2018年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为22.69μg/m3(42.67%),33.22μg/m3(37.81%),24.28μg/m3(22.58%)和31.26μg/m3(18.67%),2018~2019年秋冬季"2+26"城市SO2,NOx,PM2.5和PM10浓度的平均下降量(下降率)分别为9.36μg/m3(26.86%),25.73μg/m3(30.62%),16.38μg/m3(16.09%)和20.43μg/m3(12.33%).2017~2018年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:"散乱污"企业治理 > 交通运输结构调整 > 企业错峰生产 > 民用散煤替代 > 燃煤锅炉综合整治,2018~2019年秋冬季各项措施对PM2.5浓度的平均减排效率排序依次为:重点行业升级改造 > 企业错峰生产 > "散乱污"企业治理 > 交通运输结构调整 > 民用散煤替代 > 燃煤锅炉综合整治.  相似文献   

5.
基于2018年上海市3种类型的交通环境空气监测站(路边站,港口站和机场站)的在线监测数据,探讨了3种交通站污染物的浓度水平和昼夜分布特征,比较分析了同期上海市环境空气污染物浓度,并揭示了工作日和非工作日对交通环境空气的影响.结果显示,上海市交通环境空气,尤其是港口环境空气中NOx,NO2和NO年小时平均浓度显著高于上海市年小时平均浓度;其中NO高出上海市年小时平均浓度比例最高,港口,路边和机场环境空气NO浓度分别为68,36和17μg/m3,分别高出上海市年小时平均浓度871%,414%和143%;交通环境空气中的O3平均浓度范围为42~65μg/m3,均低于上海市平均浓度.NOx,NO2,NO,PM10,PM2.5,CO和BC(黑炭)昼夜浓度主要呈现双峰分布特征,且峰值出现时间与交通活动高峰时间较为吻合;O3的峰值大多出现在13:00,且机场环境空气浓度中O3浓度最高,峰值浓度为108μg/m3.非参数检验结果显示,上海市路边环境空气中SO2,NOx,NO2,NO,PM10,PM2.5,O3,CO和BC在周一~周日无明显差异(P>0.05).  相似文献   

6.
我国长江中下游平原典型稻田含碳温室气体通量变化特性   总被引:1,自引:1,他引:0  
刘硕  甄晓杰  刘钢  冯兆忠 《环境科学》2022,43(4):2151-2162
近年来关于碳排放研究的内容越来越受到重视,我国提出了在2030年实现碳达峰的战略目标,因此对我国温室气体排放监测的研究显得非常重要.基于涡度相关法对我国长江中下游区域典型稻田生长季的CO2和CH4通量进行监测分析,结果发现整个观测阶段稻田CO2通量呈“U”型曲线,整体表现为汇,分蘖期开始出现负值,抽穗期降到最低,通量平均值为-3.33μmol·(m2·s)-1.CH4通量与CO2通量趋势大致相反,先增加后减少,在分蘖期和拔节期迅猛上升,孕穗期从峰值降到低谷,通量平均值为0.11μmol·(m2·s)-1,通量最大值为0.40μmol·(m2·s)-1,出现在拔节期末端孕穗期初.CO2通量从07:00开始下降,在13:00左右达到最低约-16.01μmol·(m2·s)-1,白天通量值...  相似文献   

7.
基于中国统计年鉴中1985~2018年全国能源消耗和人口数据,估计中国城市人为热排放通量及其时间变化趋势.利用人口空间分布和污染物排放清单数据,探讨人为热排放的空间分布特征.依据能源类型,人为热分为工业、交通运输、建筑和新陈代谢4类排放.结果表明,我国人为热排放多年来持续增长,2000年增长加速,2012~2016年增速有所放缓.2016年我国平均人为热排放通量达到0.442W/m2,工业、建筑、交通、新陈代谢排放的全国平均人为热排放通量分别为0.311,0.072,0.038和0.020W/m2.人为热排放的高值主要分布在京津冀、长江三角洲、珠江三角洲重点城市群区域以及其他一些规模较大的区域重点城市.4类人为热排放均呈现东部多、西部少的特点.工业排放人为热分布与区域经济发展水平和城市化程度有关.交通运输排放的人为热主要集中在交通枢纽城市.与已有的人为热排放清单相比,本研究估计的人为热排放通量在规模较大的城市具有更大的数值,更能体现人类活动对人为热排放的贡献.  相似文献   

8.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

9.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

10.
对广州地区春季(2015年3~4月)、夏季(2015年6~7月)、秋季(2015年9~10月)、冬季(2015年12月~2016年1月)四个季节6个粒径段(<0.49、0.49~0.95、0.95~1.5、1.5~3.0、3.0~7.2以及7.2~10.0μm)的大气颗粒物样品中水溶性有机碳(WSOC)的浓度和光学性质等变化特征进行了研究.结果表明,WSOC的浓度水平呈现冬季[(5.07±2.80)μg/m3]>秋季[(3.87±1.51)μg/m3]>春季[(3.60±1.16)μg/m3]>夏季[(2.42±0.51)μg/m3]的季节变化特征;WSOC的质量平均直径(MMD)为0.57μm (春)、0.42μm (夏)、0.49μm (秋)和0.56μm (冬).WSOC的质量吸收效率MAE365差异较大,分布在0.18~1.42m2/g之间,冬季最高;吸收波长指数AAE值分布在3.6~9.8之间.细颗粒物(<3μm)中WSOC对PM10WSOC总吸光的贡献达到了90%以上,其中<0.49μm颗粒物的贡献超过50%.在300~500nm之间,春季、夏季、秋季和冬季WSOC对颗粒物总吸光比例平均值分别为5.23%、2.95%、3.04%和6.92%;其中<0.49μm粒径段的贡献最高,分别为3.11%、1.79%、1.65%和3.45%.进一步通过特征紫外吸光度SUVA值的分析表明芳香性和分子量可能是影响WSOC吸光能力的重要因素.粒径越小颗粒物含有越多的不饱和键,使得MAE365值较高.  相似文献   

11.
为探究黄土丘陵区退耕草地土壤呼吸及其组分日变化对氮磷添加的响应,采用裂区试验设计,主区施氮[0,50和100kg N/(hm2·a)]和副区施磷[0,40和80kg P2O5/(hm2·a)],于2019年5~8月每月测定各处理下土壤呼吸速率、异养呼吸速率及土壤温度和含水量日变化.结果表明,土壤呼吸速率及其组分日变化均呈单峰曲线,峰值出现在12:00~14:00.与不施肥相比,土壤呼吸、异养呼吸和自养呼吸速率在单施氮下分别增加7.31%~13.13%,1.12%~12.43%和7.64%~46.26%,单施磷下分别增加16.84%~18.42%,11.48%~14.22%和17.15%~29.59%,氮磷配施下分别增加24.17%~27.30%,21.94%~32.43%和34.05%~41.26%.不同氮磷添加下土壤呼吸、异养呼吸和自养呼吸碳排放量昼占比分别为52.68%~61.37%,50.92%~58.70%和51.39%~76.35%.50kg N/(hm2·a)和80kg P2O5/(hm2·a)配施处理的土壤累积CO2排放量(2012g/m2)最高,不施肥处理的土壤累积CO2排放量(1531g/m2)最低.各处理的土壤呼吸,异养呼吸和自养呼吸均与土壤温度呈显著指数正相关关系,其温度敏感性(Q10)变化范围分别为1.19~1.86,1.08~1.81和1.11~3.67,氮磷添加降低异养呼吸的Q10值,但提高自养呼吸的Q10值.总体表明,氮磷添加增加土壤呼吸及其组分速率,降低异养呼吸的温度敏感性,氮磷添加对土壤呼吸及其组分速率的促进效果与氮磷添加量及其配比有关.  相似文献   

12.
选取竺山湾为研究区域, 同时选取受人为活动影响较小的湖心区作为对比区域, 基于2011年11月至2013年8月逐月连续观测, 探讨外源输入及富营养化对CH4扩散通量的影响及其驱动机制.结果表明, 竺山湾水-气界面CH4扩散通量显著(P<0.01)高于湖心区CH4扩散通量, 其平均通量分别为(0.193±0.049)mmol/(m2·d)和(0.024±0.005)mmol/(m2·d).同时, 竺山湾湖区不同点位间CH4扩散通量也表现出明显差异, 位于河流入湖口附近点位的CH4扩散通量显著(P<0.01)偏高.逐月观测表明湖心区CH4扩散通量具有明显的时间变化特征, 且与水温表现出显著正相关关系(R2=0.53, P<0.01), 但竺山湾无此结果.另外, 入湖河流CH4溶存浓度与竺山湾CH4溶存浓度及其扩散通量呈显著正相关关系(浓度: R2=0.75, P<0.05;通量: R2=0.64, P<0.05).考虑到入湖河流具有较高的CH4溶存浓度和污染负荷, 河流外源输入可能弱化了竺山湾CH4通量对温度的依赖性, 并导致富营养化的竺山湾是大气CH4的“热点”排放源.  相似文献   

13.
基于自上而下能源清单法,主要考虑工业、交通、建筑和人体新陈代谢这4个热源对人为热的贡献,估算了2010年浙江省68个县市的人为热排放总量.使用DMSP/OLS遥感夜间灯光数据以及阈值法提取出人为热排放的主要区域,并有效减少夜灯像元溢出效应的影响.利用夜间灯光数据和增强型植被指数(EVI)构建人居指数,基于各市县人为热排放总量与其行政区范围内人居指数累计值之间很强的相关关系建立人为热排放量空间化模型,获得了250m分辨率下浙江省2010年城市人为热通量的空间分布.结果显示浙江省各县市的平均人为热排放通量为5.5W/m2,城市高值区一般介于10~40W/m2.栅格化的人为热数据可以为城市气候环境的数值模拟研究提供基础数据支持.  相似文献   

14.
利用WRF-CMAQ模式对比有无人为氯排放的模拟试验,定量分析了不同季节人为氯排放对二次无机气溶胶和二次有机气溶胶的影响.结果表明,人为氯排放对硫酸盐的影响较小,而硝酸盐对人为氯排放较为敏感,Cl-颗粒物与HNO3、N2O5、NO3和NO2均可发生反应生成硝酸盐,同时NH3也会转化为铵盐.人为氯排放使冬、春、夏、秋季硝酸盐月均浓度分别最高增加9.8 μg/m3(34.3%)、1.5μg/m3(11.4%)、1.3μg/m3(9.1%)和2.6μg/m3(10.3%),铵盐月均浓度分别最高增加3.0μg/m3(30.7%)、0.6μg/m3(10.3%)、0.5μg/m3(6.5%)和1.1μg/m3(8.0%),冬季影响最大,夏季影响最小.人为氯排放增强了Cl原子和OH自由基对VOCs的降解作用,不同种类的SOA浓度略有上升,人为氯排放对SOA浓度影响最大约为6%.二次无机气溶胶和二次有机气溶胶的增加导致了颗粒物总量的增加,人为氯排放使冬、春、夏、秋季PM10月均浓度分别最高增加14.0μg/m3(18.3%)、2.5μg/m3(3.0%)、1.9μg/m3(2.8%)和4.5μg/m3(4.3%),PM2.5月均浓度分别最高增加15.0μg/m3(24.4%)、2.1μg/m3(3.5%)、1.2μg/m3(3.2%)和3.9μg/m3(4.4%).人为氯排放的季节性影响从大到小分别为冬、秋、春、夏季,内陆的影响比沿海大.  相似文献   

15.
利用趋势分析(TA)、地理时空加权回归模型(GTWR)和多因素广义相加模型(MGAM),研究了2015~2020年华北地区O3浓度的时空分布规律及驱动因素间的复杂非线性关系.结果表明,华北地区年均O3浓度>70μg/m3,整体呈持续增长趋势,平均增加速率为2.3μg/(m3·a)(P<0.01);季节上O3浓度呈春夏高...  相似文献   

16.
为揭示黄石市二氧化氮(NO2)的健康效应和人群暴露风险特征,收集2015~2020年黄石市NO2浓度、非意外死亡、呼吸系统和循环系统疾病每日死亡人数、内科疾病每日住院人数以及气象要素等资料,探究了黄石市NO2时空变化,采用时间序列的半参数广义相加模型(GAM)定量评价NO2对黄石市死亡病例和内科住院病例人数的影响,并对居民的暴露风险(R*)进行评估.结果表明:黄石市NO2的浓度年内变化呈“U”型,春冬污染较严重,人群密集和工业区NO2浓度稍高.在最佳滞后时间下,NO2浓度每增加10μg/m3,非意外死亡、呼吸系统和循环系统病例的死亡人数在lag01、lag3、lag1时达到最大,增加百分比(ER)值分别为1.93%(95%CI:-2.10,6.14),2.13%(95%CI:-6.56,11.62),4.82%(95%CI:-0.22,10.02),内科疾病每日住院人数在lag05时达到最大,增加百分比(IP)值...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号