首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用差分吸收臭氧激光雷达、多普勒风廓线激光雷达,研究了2019年11月在广东珠海出现的一次典型臭氧污染过程前后期的时空分布特征,以及水平风向风速及垂直风速对近地面与边界层上部臭氧浓度变化的影响.结果表明:2019年11月13日的臭氧污染以低风速条件下 臭氧局地生成为主;2019年11月14日的臭氧污染以夜间残留悬空臭氧向下输送叠加地面生成为主.入夜后若近地面水平风速较小,则不利于近地面臭氧清除,地面臭氧浓度下降缓慢.若夜间边界层内存在上升气流,则有利于悬空臭氧残留的维持;若日间边界层内出现下沉气流, 则会导致残留悬空臭氧沉降,进而与新生成的臭氧叠加,加剧地面臭氧污染.污染过程中,若水平风速上升,边界层上部臭氧浓度下降不如 低层明显;若水平风速下降,边界层上部臭氧浓度上升响应也较为迟缓.  相似文献   

2.
基于无人机探空和数值模拟天津一次重污染过程分析   总被引:4,自引:4,他引:0  
污染发生在边界层中,边界层热力和动力垂直结构对重污染天气形成有显著影响.本文基于无人机探空、地基遥感观测和数值模式,开展天津地区2019年1月10~15日重污染过程期间边界层垂直结构及污染成因分析,以期加强北方沿海城市边界层过程对重污染影响规律认知,提升重污染天气预报预警准确率.结果表明:大气温度层结对重污染天气形成、持续和消散有显著影响,此次过程伴随逆温层的发展和消散,PM2.5高浓度区白天向大气上层发展,高度可达300 m以上,夜间向近地面压缩,高度在100 m左右;雾天气出现并在白天维持,改变了边界层垂直结构特征,雾顶逆温的持续存在抑制了污染物向大气上层扩散,使得白天湍流垂直混合过程贡献明显下降,导致近地面重污染天气维持和发展;过程期间区域输送贡献率为66.6%,边界层垂直结构与重污染天气区域输送密切相关,区域污染物输送高度主要出现在边界层顶部以及雾顶逆温层以上的大风速层处,且随着边界层和雾顶抬升高度的变化,通过下沉运动影响地面,形成北部弱高压天气控制下静稳天气区域输送;边界层垂直结构影响冷空气对空气质量的改善效果,S3阶段雾顶的强逆温导致冷空气无法通过湍流切应力传导到地面,在高低空存在明显的风速差,冷空气影响地面时间延后,作用减弱,重污染天气无法彻底缓解.  相似文献   

3.
通过分析成都平原城市群8个城市2015—2019年春季(4—5月)地面臭氧浓度及超标情况表明,春季成都平原平均臭氧日最大8小时平均浓度(O3_8 h)呈上升趋势,成都、眉山O3超标日较多,雅安最少但呈逐年增加趋势,资阳、乐山O3_8 h平均值和O3超标率高于夏季.同时,利用ERA-Interim再分析资料和PCT客观天气分型方法,对近5年春季成都平原及周边海平面气压场、700 hPa和500 hPa的位势高度场进行客观分型研究以揭示重污染期间高低空天气型配置,并分析天气系统及气象要素与臭氧污染的关系.结果表明:①成都平原春季容易发生O3污染的地面天气形势为低压场和均压场,气象特征表现为高温低湿、强辐射、小风、混合层较高、有弱的辐合运动,该天气型下成都市平均O3_8 h达140 μg·m-3.②700 hPa臭氧污染天气形势为南支槽和高原低涡型,500 hPa为南支槽和平直纬向型.高空为南支槽的环流形势下,地面均压和低压场的占比超过六成.污染较重的月或年份,地面、700 hPa和500 hPa污染天气型占比均较高.③对近5年春季成都平原持续O3污染过程分析发现,污染前期,成都平原处于地面高压后部或均压场中,随着700 hPa低值系统东移,其前部暖平流和正涡度平流的输送,促使平原地区整层大气增温及地面天气型由均压场向低压场转变.④污染过程中,500 hPa高空气流受高原-盆地地形的作用发生下沉,与地面低压场的辐合上升运动促进了低层局地环流的形成,这一方面限制了污染物向高层的扩散,另一方面造成边界层内O3的下传,加重成都平原O3污染的程度.  相似文献   

4.
利用2015—2019年PM2.5和气象要素观测资料、NCEP和ERA5再分析资料,分析不同天气型下武汉城市圈PM2.5区域污染时空分布、天气尺度环流和大气层结特征.结果表明,城市圈污染以武汉为中心,多为轻度-中度污染,西部重于东部.造成武汉城市圈区域污染增长的天气形势包括4类,分别为冷高压底前部型、高压后部型、均压场型和低压倒槽型.4类污染天气型均有较低的混合层高度和地表通风系数,且边界层 存在弱下沉运动和逆温,抑制污染垂直扩散.但气象要素影响PM2.5污染的机理各异:冷高压底前部型主要为大气压梯度引导偏北大风带来 污染物远程输送,边界层冷平流导致低温、锋面逆温和浅薄高湿层(65%~80%),强输入性污染配合吸湿性累积增长造成严重污染,逆温厚度对PM2.5增幅作用明显;低压倒槽型东南风输入污染弱,但高温、低压引起气流辐合导致本地污染汇积,边界层暖平流带来平流逆温和深厚湿层(1000~750 hPa),逆温层底高偏低、厚度偏厚,促进污染物在近地面吸湿增长;高压后部和均压场型均为浅薄湿层(1000~975 hPa)、湿度中等(56%~75%),污染物吸湿增长相对较弱,高压后部型主要为偏东风短程输入污染为主;均压场型则为小风静稳天气,多晴空辐射逆温,逆温 强度大,大气扩散能力差,污染主要为弱北风的输入和本地累积.  相似文献   

5.
为了弄清蒙古气旋外围出现的霾和沙尘复合污染特征及其形成的关键气象条件,本研究利用多种遥感设备(增强型云高仪、风廓线雷达和微波辐射计等)垂直加密观测数据,结合大气主要污染物(PM10、PM2.5、SO2、NO2)监测数据、加密自动气象站观测数据,以及常规地面和高空气象观测数据、NCEP再分析数据等,分析发生在北京春季的2次霾和沙尘重污染过程.结果表明,2017年5月4—5日为一次PM10和PM2.5混合污染过程,与上游地区强烈发展的蒙古气旋后部风沙区的输送有关.上游地区因受中-低空西来槽影响上升气流加强,使沙尘细颗粒物(粒径≤10 μm)悬浮于空中,由中-低空偏西风输送至下游地区,被北京及附近的弱下沉气流带至地面造成严重的PM10、PM2.5混合污染.其中,地面偏西风对上游地区的PM10、PM2.5的水平输送作用明显;2018年3月27—28日凌晨是受蒙古气旋底部低压区辐合作用和偏南气流输送作用形成的积累型霾(PM2.5)污染.28日凌晨2:00开始蒙古气旋后部沙尘区随东-西向冷高压南压而向南扩散.随后冷高压不断东移形成回流偏东风,偏东风使北京及西北部地区的低层大气产生辐合上升运动,导致本地尘土扬起,造成PM2.5重污染和PM10极严重污染;浮尘天气引发的大气污染具有突发性特征,且持续时间较长.边界层高度低、低层大气存在逆温层(或等温层)并长时间维持是霾和沙尘复合污染形成和持续的重要条件.霾和沙尘复合重污染的形成是人为污染物、沙尘细颗粒物水平和垂直输送,以及大气层结稳定共同作用的结果.  相似文献   

6.
深圳市一次典型春季臭氧污染事件成因研究   总被引:1,自引:0,他引:1  
以往珠三角地区臭氧污染普遍发生在秋季,但近年来春季臭氧污染事件不断发生,并且污染出现时间愈发提前.本研究聚焦于深圳市2022年春季(2月26日)一次臭氧污染过程,系统性地分析了此次臭氧污染过程的主要成因与关键驱动因素.结果表明,在春季臭氧污染的形成过程中,气象条件扮演着重要角色,在高压天气系统影响下的强太阳辐射、高温、低湿和低风速是导致此次臭氧污染的重要因素.通过臭氧的垂直观测数据分析发现,夜间残留层中的高浓度臭氧能够在上午时段混入边界层内,加速地面臭氧浓度累积.此外,通过臭氧前体物浓度的变化特征分析发现,在污染日的下午时段出现臭氧及其前体物浓度的快速升高,推测为上风向区域的外部输送贡献加强,这也是导致此次春季臭氧污染发生的重要原因.敏感性分析表明,污染日的臭氧生成主要受VOCs控制,但在污染加剧时受到NOx控制,因此,对春季臭氧污染的 防控需要从区域角度开展VOCs和NOx的协同减排与治理.  相似文献   

7.
利用NCEP/NCAR和FNL再分析资料以及NOAA扩展重建海温资料,结合2014年2月观测资料,探讨了2014年2月21-26日天津重污染天气过程的气象成因及预报分析。结果表明,重污染期间,东亚大槽和东亚冬季风呈现偏弱的态势,天津出现明显东南风异常且河北以南地区存在大范围高湿区,近地面层存在弱气流辐合且维持弱偏东或偏南风,对流层中低层为弱辐散下沉气流和西南气流,同时也存在逆温层结,这种静稳条件有利于黄渤海及河北以南的水汽和污染物平流输送至天津且在近地面聚集。HYSPLIT模式模拟显示污染物来源于河北省中南部,以平流和弱辐散沉降的方式输送至天津。湿度条件对于重污染天气的产生仅是必要条件,污染物大量聚集才是重要条件。WRF-CMAQ模式短期内能较好模拟重污染期间PM_(2.5)浓度空间分布及重污染天气结束时间;重污染同期及前期秋季阿留申群岛南部海域持续出现显著正海温距平,可以用作中长期预报的一个参考因素。  相似文献   

8.
利用2019年11月1日—2020年4月30日广州主城区和广州塔121 m、454 m O3浓度同步监测数据,分析了广州市O3垂直污染分布特征及成因.结果表明:①近地面O3浓度变化主要取决于人类活动如工业排放和机动车尾气排放等,而高空O3浓度主要取决于天气过程,如辐射造成光学反应加剧和区域传输.②地面的O3浓度高于垂直观测站点,其日变化均呈单峰型分布,表现为日出后太阳辐射增强O3浓度升高,在午后14:00—15:00达到一日中的最高值.③广州塔454 m的O3浓度日变化呈明显的双峰型特征,第1个峰值出现早上7:00后,O3浓度随着日出后边界层混合抬升而升高,第2个峰值持续出现在午后,因高温、辐射导致的光化学反应剧烈生成.相对广州其他站点的第2峰值滞后的现象,可能是由于近地面臭氧生成后垂直传输到塔顶出现的垂直混合的时间差,受到边界层抬升强度不同的影响.④广州塔121 m站点,O3浓度与风速的关系非常明显,广州南部地区臭氧贡献度达到了45%.在广州的冬季和春季,其中尤以冬季12—1月,广州臭氧污染贡献源广州塔中可能 来自于南部,广州塔顶454 m来自于东南部.  相似文献   

9.
乌海市地形复杂,周边工业园区分布密集,近年来夏季O3污染问题突出,且污染特征与形成机制尚不明确,分析乌海市O3变化特征,探究O3污染形成机制对该区域大气污染防治具有重要意义.本文在分析乌海市2018年6~8月3次持续O3污染过程特征的基础上,利用WRF-CMAQ模式系统进行模拟并根据过程分析输出结果对污染的成因进行了深入分析,探讨了区域输送和局地光化学反应对乌海市O3的影响.结果表明,乌海市夏季O3呈现"单峰"的日变化特征,近地面O3与向下短波辐射和气温显著呈正相关,与相对湿度呈负相关;空间分布上,乌海市3个工业园区白天和夜间均为O3低值区,乌海西南部宁夏石嘴山地区、乌海城区和西北部乌兰布和沙漠地区白天为O3高值区;过程分析结果表明,输送和化学过程及其相对大小对乌海市O3有决定性影响,6月和7月的污染过程中局地光化学反应和输送共同导致O3显著升高,且化学过程的影响是输送的两倍左右,8月O3的升高主要为输送作用的贡献;进一步对输送作用进行分解可知偏南和西北方向的输送对O3的升高有较大贡献,结合前体物的排放,可能的传输来源为宁夏银川、石嘴山及巴彦淖尔等区域,因此,乌海市应在控制本地排放的基础上,加强区域联防联控,减少区域传输对O3的影响.  相似文献   

10.
杜楠  陈磊  廖宏  朱佳  李柯 《环境科学》2023,44(7):3705-3714
自2013年我国实施《大气污染防治行动计划》以来,大气颗粒物浓度显著降低,但臭氧(O3)污染日益严峻,同时对流层O3作为一种重要的温室气体,其辐射强迫能够影响天气和空气质量.利用双向耦合的区域空气质量模型WRF-Chem,再现2017年6月发生在华北地区的一次O3污染事件,通过敏感性试验分析对流层臭氧辐射强迫(TORF)对当地气象场的影响,以及改变的气象变量对O3空气质量的反馈作用.结果表明,WRF-Chem模式在气象要素的模拟上表现出较好的性能,并且能够很好地捕捉到O3浓度的时空演变特征.TORF使北京-天津-河北-山东地区的近地面气温平均升高0.23 K (最大增温可达0.8 K)、近地面相对湿度降低1.84%、边界层高度增加27.73 m.TORF对风速的影响较弱(-0.02 m ·s-1),但产生的西南风异常容易将上游污染地区的O3和其前体物输送至华北地区.在臭氧辐射反馈的影响下,研究区域内φ(O3)平均增加1.7%(1.23×10-9),而在污染严重的北京和天津地区,φ(O3)增加量最高可达5×10-9.进一步利用过程诊断分析法可以发现,增强的气相化学反应是TORF恶化近地面O3污染的主导原因.  相似文献   

11.
城市化对青岛夏季海陆风环流影响的个例分析   总被引:3,自引:1,他引:2  
基于分辨率为500 m的青岛地区下垫面土地利用资料,利用中尺度大气数值模式Weather Research& Forecast(WRF),模拟分析了不同城市下垫面情形下,2007年8月4-5日青岛地区的一次海陆风过程.控制试验和干农田下垫面及城市下垫面两个敏感性试验都模拟出了海陆风的转换过程及城市小风区和城市热岛现象.模拟分析结果表明,城市化进程下城市区域气温明显升高,增温幅度为1~2℃,高密度城市下垫面造成的城市热岛效应增大了海陆温差,加强了海风,青岛城市热岛环流受海陆风影响显著;干农田地貌与灌溉农田、林地下垫面相比,不利于局地降温,但与城市下垫面相比,有效地加强了近地面风速.  相似文献   

12.
上海市郊春季臭氧及其前体物观测研究   总被引:5,自引:0,他引:5  
利用上海市郊金山环境监测站沿海站点2007年春季的逐时臭氧浓度及其前体物的观测数据,分析了臭氧浓度的时间变化规律,以及海风和陆风对臭氧和其前体物(NO、NO2和CO)浓度的影响.结果表明,臭氧浓度总体较高,共有10日出现臭氧浓度超标,表现出了比较明显的春季高峰现象;臭氧浓度的日变化表现出了受污染地区的典型特征,而NO和...  相似文献   

13.
在平稳天气条件下,京津渤地区受燕山山脉地形影响,形成地形局地环流。地形环流的高度一般在1700m左右,平均水平范围约100—200km。平原中,北京、天津等大城市的作用,又使局地环流流场产生扰动,城市环流的高度约450m,水平范围约30—40km。城市环流的水平辐合可达5×10~(-4)sec~(-1)。在平原增热明显的日子里,渤海湾沿岸出现向岸风,海风深入内陆的距离约30—40km,厚度约300多米,海风与陆上西南风造成辐合,其辐合量达×10~(-4)sec~(-1)。 当京津渤地区在典型的局地环流控制时,如有城市环流和海风环流相迭加,可以出现严重的污染状况,大气气溶胶浓度可比平常情况下高一个量级。  相似文献   

14.
The thermal internal boundary layer(TIBL) is associated with coastal pollution dispersion,which can result in high concentrations of air pollutants near the surface of the Earth. In this study, boundary layer height data which were obtained using a ceilometer were used to assess the effect of the TIBL on atmospheric pollutants in Qinhuangdao, a coastal city in North China.A TIBL formed on 33% of summer days. When a TIBL formed, the sunshine duration was 2.4 hr longer, the wind speed was higher, the wind direction reflected a typical sea breeze, and the boundary layer height was lower from 9:00 LT to 20:00 LT compared to days without a TIBL. If no TIBL formed, the average concentrations of PM_(2.5) and PM_(10) decreased with increasing boundary layer height. However, when a TIBL was observed, the average concentrations of PM_(2.5) and PM_(10) increased with increasing boundary layer height. Because the air from the sea is clean, PM_(2.5) and PM_(10) concentrations reached minimums in the daytime at 16:00 LT. After16:00 LT, the PM_(2.5) and PM_(10) concentrations increased rapidly on days when a TIBL formed,which indicated that the TIBL leads to the rapid accumulation of atmospheric pollutants in the evening. Therefore, the maximum concentrations of particulate matters were larger when a TIBL formed compared to when no TIBL was present during the night. These results indicate that it is suitable for outdoor activities in the daytime on days with a TIBL in coastal cities.  相似文献   

15.
北京夏季典型臭氧污染分布特征及影响因子   总被引:19,自引:2,他引:17  
为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日—6月9日的φ(O3)进行观测. 通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空φ(O3)时空分布特征,并将φ(O3)与温度、风速及风向3个气象要素进行相关分析. 结果表明:近地面φ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值. 高空φ(O3)的空间分布很不均匀,上层气流易使O3富集层向下输送造成污染,同时稳定边界层对大气扩散的不利影响也是形成O3污染的重要原因. φ(O3)的日变化趋势与温度的日变化趋势呈显著正相关,R(相关系数)为0.74;上下层湍流交换使风速与近地面φ(O3)呈正相关,而水平扩散使二者呈负相关;通过分析风向的分布规律发现,东北风易造成北京地区O3污染.   相似文献   

16.
冬季山谷风和海陆风对京津冀地区大气污染分布的影响   总被引:4,自引:4,他引:0  
为了弄清冬季山谷风、海陆风对京津冀地区大气污染时空分布的影响,利用2016年12月地面加密自动气象站逐时观测数据和中国环境监测总站发布的逐时PM_(2.5)浓度数据,计算平均风矢量场和平均PM_(2.5)浓度场,分析山谷风、海陆风变化规律及其对PM_(2.5)浓度分布的影响.结果表明,在山谷风日,中午至下午谷风将位于河北太行山东部地区的污染物向北输送.傍晚以后,在北京西部、北部,以及河北太行山山前出现的山风与偏南风构成"人字形"辐合线,辐合线的汇聚作用使北京地区、廊坊,以及保定、石家庄、邢台等地大气污染加重.在海陆风日,下午至前半夜,河北中东部沿海地区出现东南向海风,深入内陆到达天津东南部地区,海风前缘区域大气污染加重;通过对中国科学院大气物理研究所铁塔0~325 m风向风速与PM_(2.5)浓度时间变化关系分析,以及利用Cressman法插值得到的地面风向风速和PM_(2.5)浓度二维格点场,分析北京地区重霾污染过程中近地层山谷风和海陆风对大气污染形成的影响:中午至下午,谷风将大气污染物向北京输送.傍晚以后,大气污染物在山风与偏南风形成的辐合线附近汇聚,在北京地区及以南地区形成PM_(2.5)高污染区.凌晨至早晨北京被山风控制,大气污染物被吹离北京、滞留在北京以南至天津西北地区.冬季,山谷风的输送和汇聚作用使大气污染物以日为周期不断循环和累积,对北京地区至北京以南地区、河北太行山东部地区的大气重污染形成起重要作用.  相似文献   

17.
海南岛地区大气输送和扩散特征的数值模拟   总被引:6,自引:2,他引:4  
采用中尺度气象模式WRF及风场诊断模式CALMET,结合轨迹分析和拉格朗日随机游走模拟方法,分析了海南岛地区低层大气中尺度水平输送和扩散特性,并计算了各季平均大气扩散模态.结果表明,该区域大气污染物的扩散和输送主要受到大尺度背景环流、海陆风等局地环流及地形绕流等的影响.海陆风局地环流是沿海城市源排放的大气污染物向海南本岛输送和扩散的主要机制.北部城市海口的大气扩散对岛内影响最大,冬季平均影响范围可覆盖西北半部;春、秋季主要影响西北和北部区域;夏季对本岛的影响仅限于北部沿岸.南部城市三亚的大气扩散对岛内影响较小,秋季向西南海面的扩散对本岛几乎没有影响;冬、春季对三亚以西沿岸的影响有所增加;夏季扩散影响全面指向岛内,并因地形的作用而东、西向大角度扩展,影响海岛南部的大部分沿岸地区.西北部昌江的平均输送扩散方向与当地海岸线的走向基本一致,污染影响不易深入到岛内.其中,秋季扩散影响以偏西南方向为主,仅对昌江西南部分海岸有少量影响;冬、春季扩散形态类似但影响范围扩大到以东方市为代表的低山盆地地带;海岛西北部大部分沿海地带可受到昌江夏季扩散的影响,但平均扩散方向指向东北偏北的海面.  相似文献   

18.
沈阳2007年城市热岛研究   总被引:1,自引:0,他引:1  
城市热岛现象是城市气候灾害之一,随着城市化进程的迅速发展,城市热岛现象也越来越受到关注。城市密集的人口分布和汽车保有量的不断增加,加剧了城市热量排放加上越来越多的城市路面被水泥和沥青所代替,城市热岛现象必然会越来越严重。通过对沈阳及郊区康平、法库2007年常规气象资料进行热岛特征分析,并对12月25日全年热岛强度最高日进行风场、温度场、温度廓线、流场的分析。得出结论:沈阳市白天热岛强度比夜晚强,夜晚热岛强度比较低,有时会出现冷岛;沈阳冬天热岛强度最强;沈阳雪天或雨天热岛强度最强;沈阳热岛强度>2小时数冬天最多;通过对强热岛日的分析,白天污染重,有逆温存在,地面气流稳定,天气形势稳定,风速小,易出现强热岛。  相似文献   

19.
吴蒙  罗云  吴兑  范绍佳 《中国环境科学》2016,36(11):3263-3272
通过2004年10月在珠江三角洲(以下简称“珠三角”)开展大气边界层观测试验得到的垂直风温资料和逐时PM2.5浓度资料,利用局地环流指数(RF)等方法研究了珠三角海陆风特征及其对空气质量的影响.结果表明:局地环流指数是表征局地大气输送能力的有效指标;冷暖气团对峙导致珠三角污染日背景风场较弱,沿海海陆风活动活跃,空气质量指数与RF系数相关性颇高,珠三角沿海100~400m处RF系数值主要分布在0.5~0.8之间;在海陆风影响下低层风场的有效输送能力较弱,不利于污染物的输送扩散.而随着冷空气全面控制珠三角,垂直风场RF系数值高达0.9以上,海陆风难以发展,风场输送能力强,能够持续的将污染物输送出去.观测发现沿海观测点试验期间海陆风发生频率约为47.8%,其中72.7%的海陆风日出现了污染天气,海陆风日地面风向呈现出明显的随时间顺时针偏转特征,海风约从16:00时开始出现,并在20:00达到最大影响高度约为600~800m.夜间海风将污染物输送回内陆观测点,导致内陆PM2.5浓度在19:00~21:00时出现浓度峰值,呈现出明显的双峰结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号