首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
本研究分别利用2019年、2020年第一季度河北省国省道交通调查站监测数据,计算了两年国省道机动车逐日交通量及大气污染物排放量,分析了新冠肺炎疫情期间国省道机动车大气污染物排放的变化情况.与2019年相比,2020年第一季度河北省国省道交通量同比下降38.1%,单位公里CO、VOCs、NOx、PM2.5、PM10排放强度分别同比下降31.3%、32.7%、19.1%、20.2%、20.0%.从不同公路类型来看,2020年第一季度,普通公路交通量持续下降,国家高速和省级高速交通量在3月出现回升,分别同比增长5.6%、37.2%,且货车增速高于客车.2020年春运期间,客车、货车总交通量分别为去年同期的44.2%、51.0%,国省道CO、VOCs、NOx、PM2.5、PM10的排放强度分别是去年同期的51.4%、50.6%、52.6%、52.3%、52.3%.从2月14日开始,客车、货车交通量开始逐步回升,到3月底,国省道总交通量恢复到了去年同期的46.6%,其中,客车是去年同期的34.5%,货车是70.3%.  相似文献   

2.
辽宁省2000~2030年机动车排放清单及情景分析   总被引:2,自引:2,他引:0  
机动车排放已经成为城市地区大气污染的主要来源.基于COPERT模型和ArcGIS技术,建立了2000~2030年辽宁省机动车排放清单,分析6类污染物(CO、NMVOC、NOx、PM10、SO2和CO2)排放的总体趋势与空间演变特征,同时以2016年为基准年,基于情景分析法设置8类控制措施情景并评估不同控制措施对污染物的减排效果.结果表明2000~2016年,机动车的CO、NMVOC、NOx和PM10排放量呈现先增后降的趋势,SO2排放量呈现波动变化,而CO2排放量则呈现持续增长态势.轻型载客车和摩托车是CO和NMVOC排放的主要贡献车型,重型载客车和重型载货车是NOx和PM10的主要排放源,SO2和CO2则主要是由轻型载客车排放.辽宁省中部及南部机动车排放量明显高于辽东和辽西.从城市层面来看,排放主要集中在沈阳市和大连市.情景分析表明,实施更加严格的排放标准可以增强减排效果,且升级排放标准的时间越提前减排效果越好.综合情景将实现减排最大化,强化综合情景对CO、NMVOC、NOx、PM10、CO2和SO2的削减率达到了30.7%、14.3%、81.7%、29.4%、12.3%和12.1%.  相似文献   

3.
天津市2017年移动源高时空分辨率排放清单   总被引:5,自引:5,他引:0  
移动源已成为城市地区大气污染的主要贡献源.已有研究多关注道路移动源(机动车)或非道路移动源(工程机械、农业机械、船舶、铁路内燃机车和民航飞机)中单一源类的排放,欠缺对移动源总体排放特征的把握.本研究提出了移动源高时空分辨率排放清单的构建方法,据此建立了天津市2017年移动源排放清单,并分析其排放构成与时空特征.结果表明,天津市移动源CO、VOCs、NOx和PM10的排放量分别为18.30、6.42、14.99和0.84万t.道路移动源是CO和VOCs的主要贡献源,占比分别为85.38%和86.60%.非道路移动源是NOx和PM10的主要贡献源,占比分别为57.32%和66.95%.从时间变化来看,移动源所有污染物排放在2月均为最低,CO和VOCs在10月排放最高,而NOx和PM10则在8月排放最高.节假日(如春节和国庆节等)对移动源排放的时间变化影响显著.从空间分布来看,CO和VOCs排放主要集中于城区和车流量大的公路(高速路和国道)上,NOx和PM10在城区与港区均具有较高排放强度.污染物的空间分布差异是由其主要贡献源的空间位置决定的.本研究可为天津市大气污染的精细化管控和空气质量模拟提供数据支撑,同时可为其他地区移动源排放清单的建立提供方法参考.  相似文献   

4.
2010~2017年四川省机动车污染物排放趋势分析   总被引:2,自引:1,他引:1  
四川省机动车保有量日益增加,本研究基于特定的清单计算方法及多口径的活动水平数据,得到四川省2010~2017年机动车尾气污染物排放量.结果表明,四川省小型载客汽车的保有量增长最快,不管是机动车还是小型载客车保有量的增速,均高于全国平均增速;2017年四川省机动车共排放CO、NOx、SO2、NH3、HC、PM2.5、PM10、BC和OC分别为706.9、275.3、0.3、5.7、164.8、8.1、8.9、4.1和1.4 kt,除NH3以外,四川省所排放的其他污染物呈现波动中下降的趋势,在2014~2016年前后达到高值.柴油车的保有量变化与NOx的变化显示出较强的相关性;新车排放标准加严是最具有减排潜力的措施之一,同时随着实施年份的增长,显示的减排潜力越大,燃油品质的提升对于污染物的减排每年也会有6%以上的减排效力.未来应将HC和NOx减排作为四川省机动车管控的重要内容.  相似文献   

5.
于2017年3月—2018年5月在广州市南沙港区选取不同吨位的5艘船舶进行登船实测,建立了基于燃油消耗的排放因子.结果表明,船舶辅机CO2排放因子为(3085±439)~(3195±121) g·kg-1,CO排放因子为(5.50±1.33)~(26.10±8.90) g·kg-1,TVOC排放因子为(0.29±0.02)~(1.68±0.06) g·kg-1,PM2.5排放因子为(0.56±0.09)~(12.50±3.11) g·kg-1,NOx排放因子为(19.20±4.12)~(83.30±11.80) g·kg-1,基于燃油消耗量,估算2017年广州港船舶停泊工况辅助发动机SO2、CO、TVOC、PM2.5和NOx排放总量分别为736、(794±209)、(46.40±2.39)、(223.0±49.4)和(3237±698) t.船舶引擎功率对排放CO、TVOC和PM2.5影响显著,引擎功率较低的船舶以上3种大气污染物排放因子更高.从吨位而言,≥10000总吨的船舶对SO2、CO、TVOC和NOx 4种大气污染物的排放分担率均超过50%,≤2999总吨的船舶则对PM2.5的排放分担率最高.从船舶类型而言,分担率最高的是集装箱船,分别占SO2、CO、TVOC、PM2.5和NOx排放总量的43.8%、30.8%、41.4%、16.3%和40.9%,此外,散货船、其他货船、顶推拖船和油船对排放量的分担率也较高,以上5种船舶占到了各类大气污染物排放总量的90%.  相似文献   

6.
邹超  汪亚男  吴琳  何敬  倪经纬  毛洪钧 《环境科学》2024,45(3):1293-1303
公交车队电动化是道路交通部门实现减污降碳的重要手段,评估当前公交车队电动化减排成效,对推进大中型城市公交全面电动化具有重要参考意义.基于燃料生命周期法分析了郑州市公交车队电动化前后CO2和污染物排放特征,并评估了不同电动化情景下的车队排放.结果表明,本轮电动化使公交车队燃料生命周期内CO2和PM2.5排放量分别增长32.6%和42.6%,CO、NOx和VOC排放量下降了28%,34%和25%.优化发电结构对于电动化过程中的CO2及PM2.5减排尤为重要,在全面电动化和发电结构优化的最佳情景下,CO2、CO、NOx、VOC和PM2.5减排可达38.7%、80.1%、84.4%、92.2%、30.2%.在全面电动化进程中,应优先对中长里程线路车辆进行电动化替换,此外,插电混动天然气车型的纯电动化替换对减排利弊兼有,同步推进车队替换和电力结构调整进程才能实现减污降碳协同增效.  相似文献   

7.
蒋春来  宋晓晖  钟悦之  孙亚梅  雷宇 《环境科学》2018,39(11):4841-4848
基于我国2011~2015年水泥企业逐条生产线基础信息、活动水平及控制技术等数据,建立了水泥工业NOx排放量计算方法和动态排放数据库.利用该方法,计算了2011~2015年逐条水泥生产线NOx排放量,分析了2010~2015年我国水泥工业NOx排放特征.结果表明,我国水泥工业NOx排放量变化范围为168~199万t,自2010年的169万t增加到2012年的199万t,达到排放峰值,随后逐年下降,到2015年与2010年基本持平.水泥工业NOx排放的地区分布不均衡,2015年安徽、四川、河南、湖南、云南、山东是排放量最大的省份,占全国排放总量的40%,上海、内蒙、山西、新疆、湖南、云南、四川是单位熟料NOx排放强度最大的省份.从生产线规模来看,规模≥ 4000 t·d-1的熟料生产线产量占比和NOx排放量占比均最大,分别为68.5%和66.5%,单位熟料NOx平均排放强度最低.水泥生产工艺结构的转变及水泥工业降氮脱硝工作的开展是影响水泥工业大气NOx排放特征的主要因素.  相似文献   

8.
河南省2016~2019年机动车大气污染物排放清单及特征   总被引:4,自引:4,他引:0  
基于城市机动车保有量和高速公路交通流量,结合行驶里程和VOCs源谱,采用排放因子法建立了河南省2016~2019年城市和2016年高速公路机动车高分辨率大气污染物排放清单.结果表明,2016年小型客车和普通摩托车等汽油车是CO、VOCs和NH3的主要贡献源,SO2、NOx和PM主要来自重型和轻型柴油货车,国1、国3和国4标准车对污染物排放贡献突出,郑州、周口和南阳的排放量较大;高速公路8~10月的车流量较高,11月最低,城市主干道周变化和日变化分别呈现出明显的周末效应和双峰特征;排放高值区集中在交通网密集、交通流量大的城市中心及市区附近向外辐射的道路上,连霍高速和京港澳高速是高排放道路;轻型汽油车对臭氧生成潜势(OFP)贡献最大,乙烯和丙烯等5个物种对VOCs排放量和OFP贡献均较大;2016~2019年机动车保有量年均增长率为5.7%;与2016年相比,2019年VOCs排放增加2.8%,SO2、PM2.5、PM10、NH3、CO和NOx的降幅分别为76.3%、51.7%、50.3%、43.1%、16.7%和5.9%;2019年各污染物在控制政策下的实际排放量相对基准情景的减排比例在15.6%~82.4%之间.  相似文献   

9.
城市机动车排放因子隧道试验研究   总被引:23,自引:7,他引:16  
选取典型城市隧道进行机动车排放因子测试,应用隧道试验原理,通过连续48h的现场采样监测,获得了隧道内机动车排放污染物NOx.CO、SO2、PM10、VOC和HC浓度、交通参数(车型、车速、交通流量)和气象参数(如风速、风量、温度、湿度)等实测数据.通过质量平衡计算出隧道内机动车NOx.CO、SO2、PM10和HC的平均排放因子分别为1.379、15.404、0.142、0.637、1.857g·(km·辆)-1.并在此基础上应用多元回归方法计算出8大类机动车各种排放污染物的单车排放因子.结果反映目前中国城市机动车污染物排放水平及各污染物排放特征.  相似文献   

10.
京津冀地区钢铁行业污染物排放清单及对PM2.5影响   总被引:1,自引:0,他引:1  
以京津冀地区为研究区域,采取自下而上的方法,建立京津冀地区钢铁行业细化至焦化、烧结和球团、炼铁、炼钢、轧钢等工序的多污染物排放清单.清单估算结果显示,2015年京津冀地区钢铁行业SO2、NOx、TSP、PM10、PM2.5、CO、VOC的排放量分别为38.82、27.23、79.19、53.15、38.68、823.38、26.53万t,其中烧结和球团工序是最主要的污染物排放工序(17.0%~72.0%),其次为炼铁工序(4.6%~42.4%)和轧钢工序(3.5%~35.7%).采用具有污染物来源示踪功能的双层嵌套气象-空气质量模型系统(WRF-CAMx)耦合模型模拟京津冀地区钢铁行业污染物排放对区域大气PM2.5浓度的影响.模拟结果显示:钢铁行业在春夏秋冬这4个季节对京津冀地区PM2.5浓度贡献率分别达到14.0%、15.9%、12.3%、8.7%.各地市中,钢铁行业对唐山市PM2.5影响最大,年均PM2.5浓度贡献率高达41.2%,其次为秦皇岛市、石家庄市、邯郸市,年均PM2.5浓度贡献率分别达到19.3%、15.3%、15.1%.  相似文献   

11.
中国国道和省道机动车尾气排放特征   总被引:7,自引:7,他引:0  
王人洁  王堃  张帆  高佳佳  李悦  岳涛 《环境科学》2017,38(9):3553-3560
近年来,随着我国机动车保有量的持续增长,机动车排放已成为我国重要的大气污染物来源之一.现有的机动车排放研究多关注城市内的机动车大气污染物排放,针对城市间的大气污染物排放研究较少.我国城市间交通道路主要包括国道和省道,截止至2015年我国国道里程18.53万km、省道里程32.97万km,约占全国等级公路总里程的13%,因此开展我国国道和省道机动车大气污染物排放研究十分重要.本研究基于全国国道和省道交通监测站的年均监测数据,采用环境保护部发布的《道路机动车大气污染物排放清单编制技术指南(试行)》中的指导方法,计算了2015年我国国道和省道机动车的大气污染物排放清单,分析了污染物排放的时空分布特征.结果表明,我国国道和省道公路机动车排放的一氧化碳(CO)、氮氧化物(NO_x)、颗粒物(PM)和碳氢化合物(HC)排放量分别占全国机动车污染物总排放量的4.5%、27.9%、14.4%和7.7%;不同车型对国道和省道机动车大气污染物排放的分担率不同,其中大货车是NO_x、PM_(10)、PM_(2.5)的主要来源,摩托车是CO和HC的主要来源;不同道路类型中各车型的大气污染物排放分担率也不同,如高速路上大货车是NO_x、PM_(10)和PM_(2.5)的主要来源,普通道路上大客车和大货车是NO_x、PM_(10)和PM_(2.5)的主要来源.  相似文献   

12.
成都市道路移动源排放清单与空间分布特征   总被引:4,自引:0,他引:4  
以成都市为例开展了路网、交通流、道路行驶工况和机动车保有量等数据的收集工作,运用自下而上的方法,基于实测校正和本地化的IVE模型计算了不同区域机动车在高速路、主干道、次干道和支路的排放因子,应用GIS技术建立了1 km×1 km的成都市高时空分辨率道路移动源排放清单.结果表明,2016年成都市道路移动源CO、VOCs、NO_x、SO_2、PM_(10)和NH_3排放量分别为4.2×10~5、4.5×10~4、7.2×10~4、0.4×10~3、1.1×10~4和6.2×10~3t.CO排放主要贡献车型为小型客车、中型客车和大型客车,VOCs排放主要源于小型客车和摩托车,NOx和SO2排放主要产生于小型客车和重型货车,PM10排放主要贡献车型为重型货车,NH3排放主要由小型客车贡献.污染物排放量空间分布呈现出由城市中心向卫星城市、远郊区递减趋势,中心城区和二圈层区域路网密集,排放呈片状分布,三圈层则呈带状分布.排放清单机动车技术分布数据可靠性较高,而交通流数据和排放因子存在一定不确定性.  相似文献   

13.
樊守彬  郭津津  李雪峰 《环境科学》2018,39(8):3571-3579
应用基于路网车流信息的情景分析方法,对北京城市副中心地区依据不同控制情景,以2015年为基准年建立机动车尾气排放清单.通过计算未来年路网车流信息和各情景下实际路网机动车污染物的排放清单,预测2020年和2025年的污染物排放变化.结果表明,未来10年北京城市副中心路网密度和机动车行驶里程持续增长,与基准情景相比,各控制情景对污染物排放量均有削减,新能源车推广情景对各污染物减排效果显著,且对NOx和PM的减排效果更好.外埠车限行情景对各污染物减排效果均较为显著,淘汰高排放车措施在短时间内削减效果显著,但长期削减效果较弱.综合情景对污染物的削减率达到最佳,机动车污染物CO、NOx、HC和PM排放量分别下降39.0%、58.7%、49.2%和55.5%.  相似文献   

14.
以杭州市全市域为研究对象,基于机动车排放管理数据库和IVE模型本地化后计算出市区、城区、城郊和郊区4类区域及快速路、主干路和次干路3类道路的各类机动车排放清单,利用Arc GIS及杭州市路网信息建立了1 km×1 km网格化空间分布,分析了机动车污染物排放特征.结果显示,杭州市机动车各污染物NO_x、CO、PM_(2.5)和VOCs的年排放量分别为4.9×10~4、12.5×10~4、0.2×10~4、2.1×10~4t.各种车型中,中重型货车对NO_x和PM_(2.5)的贡献均最大,分别为45.8%和36.3%,其次为大中型客车、公交客运,小微型客车对CO和VOCs的排放贡献最大,分别为69.3%和51.1%.机动车各污染物排放强度均呈现由城市中心向城市边缘递减的趋势,高排放区域集中在城中心及城南和城北区域,同时各污染物排放量日变化特征明显,均出现弱双峰现象.  相似文献   

15.
基于交通流的成都市高分辨率机动车排放清单建立   总被引:3,自引:3,他引:0  
潘玉瑾  李媛  陈军辉  石嘉诚  田红  张季  周敬  陈霞  刘政  钱骏 《环境科学》2020,41(8):3581-3590
提出一种基于交通流监测数据的道路机动车高分辨率排放清单建立方法,对成都市道路交通流特征进行分析并建立了成都市机动车尾气高分辨率排放清单.结果表明,成都市道路车流量及排放均呈现明显的"双峰"分布,早晚高峰时段机动车通行量占全天的39.85%,车队结构中排放标准以国Ⅳ车为主,车辆类型以小型车为主,燃料类型以汽油车为主;道路机动车SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC和VOCs(不含驻车蒸发)日排放量分别为3.89、 162.08、 324.11、 4.79、 4.36、 1.89、 0.78和44.37 t,空间分布整体呈现从城市中心到外围排放强度逐渐降低趋势,时间分布基本呈现"双峰"分布,颗粒物相关指标受货车流量影响较大; NO_x、PM_(10)、PM_(2.5)、BC和OC主要来源为大型柴油车,CO主要来源为小型汽油车,其中大型车对NO_x的贡献率达80%;基于保有量的计算方法对成都市道路机动车污染物排放存在一定高估,高估比例在1%~30%.  相似文献   

16.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

17.
Over the past decade, the emission standards and fuel standards in Beijing have been upgraded twice, and the vehicle structure has been improved by accelerating the elimination of 2.95 million old vehicles. Through the formulation and implementation of these policies, the emissions of carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), and fine particulate matter (PM2.5) in 2019 were 147.9, 25.3, 43.4, and 0.91 kton in Beijing, respectively. The emission factor method was adopted to better understand the emissions characteristics of primary air pollutants from combustion engine vehicles and to improve pollution control. In combination with the air quality improvement goals and the status of social and economic development during the 14th Five-Year Plan period in Beijing, different vehicle pollution control scenarios were established, and emissions reductions were projected. The results show that the emissions of four air pollutants (CO, VOCs, NOx, and PM2.5) from vehicles in Beijing decreased by an average of 68% in 2019, compared to their levels in 2009. The contribution of NOx emissions from diesel vehicles increased from 35% in 2009 to 56% in 2019, which indicated that clean and energy-saving diesel vehicle fleets should be further improved. Electric vehicle adoption could be an important measure to reduce pollutant emissions. With the further upgrading of vehicle structure and the adoption of electric vehicles, it is expected that the total emissions of the four vehicle pollutants can be reduced by 20%-41% by the end of the 14th Five-Year Plan period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号