首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 953 毫秒
1.
辽宁省港口邻近区域海运废气排放测算   总被引:1,自引:1,他引:1       下载免费PDF全文
为准确测算沿海地区船舶废气排放量,基于试验数据确定了NOx、CO、HC和CO2排放因子;结合文献资料和海事局进出港船舶签证数据,采用基于船舶活动过程的方法测算了2014年辽宁省港口邻近区域〔距港口减速区外边界25 n mile(1 n mile=1 852 m)以外的边界线与港口陆地岸线所围成的区域〕海运废气排放清单. 结果表明:2014年辽宁省港口邻近区域海运NOx、CO、HC、CO2、SO2和PM(颗粒物)的排放量分别为11 827.1、971.4、399.6、1 097 426.5、11 654.1和959.2 t;散货船、集装箱船和油船3种主要类型船舶的NOx、CO、HC、CO2、SO2和PM的分担率之和分别为74.7%、77.8%、70.8%、68.0%、70.9%和70.6%;主机NOx、CO、HC、CO2、SO2和PM的分担率最大,分别为63.7%、63.0%、46.0%、40.4%、46.4%和45.3%;停泊工况下的NOx、CO、HC、CO2、SO2和PM排放量分别为3 318.3、281.7、168.3、520 194.9、4 894.0和411.5 t. 船舶降速运行、减少停港时间、燃用低硫油和向船舶供应岸电等措施能降低港口邻近区域海运废气排放. 基础数据缺乏或数据代表性不足给废气排放清单带来了一定的不确定性.   相似文献   

2.
曾凡涛  吕靖 《中国环境科学》2020,40(5):2304-2311
采用基于船舶活动的排放因子法,测算了2018年进出厦门港的船舶排放清单,并在排放数据的基础上,借助外部成本评估工具,从环境和社会两类指标层面上评估了港口的生态效率.结果表明:2018年厦门港船舶排放SOx、NOx、HC、CO、PM2.5、PM2.0和CO2e(二氧化碳当量)的总量分别为3222,11977,490,1118,411,542和710374t;集装箱船为最大贡献船型,船舶主机排放比例最大;对于不同运行工况,巡航工况排放的污染气体最多,停泊工况(包括港内停泊和港外锚泊)排放的温室气体最多;8~12月份的船舶排放量较高.船舶排放的外部总成本约为19.95亿元(约为港口年收入的7.6%),其中NOx、PM10和SOx的外部成本较高.港口生态效率的评估反映了港口生产运营对环境和社会的影响.船舶使用低硫油和岸电能够减少船舶排放,同时能够提高港口的生态效率.  相似文献   

3.
环渤海经济区海域船舶大气污染物排放特征   总被引:1,自引:0,他引:1       下载免费PDF全文
环渤海经济区是我国重点打造的7个跨省(区、市)的经济区域之一,也是我国北方大气污染控制重点区域和主要航运发展区域.随着陆上污染物减排力度的不断加强,环渤海经济区周边海域船舶大气污染日益受到各界关注.为分析环渤海经济区周边海域船舶大气污染物排放特征,采用船舶AIS(Automatic Identification System,自动识别系统)数据、国内外船舶登记注册数据,利用基于AIS的动力法计算了环渤海经济区周边海域船舶大气污染物排放清单.结果表明:2017年环渤海经济区船舶SOx、NOx、PM10、HC和CO的排放量分别为26.18×104、41.12×104、3.48×104、1.13×104和2.66×104 t;船舶大气污染物排放主要在低速航行、巡航和系泊工况下产生,低速航行下SOx、NOx、PM10、HC、CO的分担率较大,分别为45.56%、48.79%、46.55%、48.68%、47.00%,系泊工况下SOx、NOx、PM10、HC和CO的排放量分别为5.06×104、6.86×104、0.67×104、0.19×104和0.51×104 t,因此,推进靠港船舶使用岸电等举措具有良好的减排效果.船舶使用硫含量(以质量分数计)为0.5%和0.1%的燃料油后,SOx排放量分别减少81.47%和96.29%,可见船舶使用低硫油时SOx减排效果显著.研究显示,禁止船舶在航行时使用高硫油、要求船舶靠港前换烧低硫油、提高港口岸电覆盖率、加大靠港船舶使用岸电力度是环渤海经济区周边海域船舶大气污染物减排的有效措施.   相似文献   

4.
大连海域远洋船舶排放清单   总被引:11,自引:3,他引:8       下载免费PDF全文
为准确评估船用柴油机实际排放,利用船舶自动识别系统(automatic identification system,AIS)采集远洋船舶的船速、航行时间、地理位置信息等实时航行数据,采用动力法对2012年大连港远洋船舶的排放清单进行计算. 结果表明:2012年大连港远洋船舶PM10、NOx、SOx、CO、HC、CO2总排放量分别为5 785(包括4 628 t PM2.5)、51 451、49 437、4 677、2 010及2 885 388 t. 在4种运行工况中系泊工况排放量最大,受船舶类型和污染物种类影响,系泊工况污染物排放所占比例有所不同,但其分担率均在75.0%左右. 船舶排放污染物的空间分析表明,船舶系泊停靠的港口区域是污染物排放最密集的区域. 从船舶类型来看,散货船、集装箱船、邮轮和油轮是污染物主要排放船型,在整个船舶排放清单中,这4类船舶对DPM(柴油机颗粒物)、NOx、SOx、CO、CO2的排放分担率之和分别为90.9%、91.4%、91.9%、91.5%、91.9%. 在船舶的主机、辅机和锅炉3种排放源中,主机是主要排放源,集装箱船和滚装船的主机分担率为90.0%,货船和邮轮的辅机排放分担率达到40.0%.   相似文献   

5.
基于AIS数据的中国沿海集装箱港口碳排放   总被引:1,自引:0,他引:1  
为了精确有效地测量船舶在港碳排放,提出了一种基于海量船舶AIS (Automatic identification System)航行轨迹数据的港口碳排放计算框架,并结合上市港务公司经营数据,估算港口碳排放承担能力.以中国11个沿海主要集装箱港口为例,采用2018年全球4280艘集装箱船的AIS轨迹全年数据计算碳排放社会成本.结果显示:中国沿海集装箱港口碳排放量与船舶抵港艘次整体呈正相关,上海港是全球第一大集装箱港口,2018年其港口CO2排放量最高,为69.3万t;船舶靠港作业时,在泊和锚泊状态CO2的排放比例较高,占碳排放比例的65.8%;从CO2排放社会成本来看,上海港域内的船舶碳排放社会成本最高,2018年需要支付2459.6万元,从承担碳排放社会成本的能力来看,连云港压力较大,每亿营业收入需要承担碳排放社会成本24.46万元.  相似文献   

6.
基于AIS的数据基础运用动力法编制了2016年青岛市港口船舶废气排放清单,并分析了其空间排放特征、不同船舶类型排放特征及不同工况下的排放特征;基线内加基线外12海里以内船舶SO_2、NO_x、PM_(10)、PM_(2.5)、HC、CO排放量分别为1.56、2.34、0.21、0.18、0.09、0.17万t。船舶排放各污染物排放强度最高的区域集中在主航道、港口以及锚地。排放占比较大的船舶类型依次为集装箱船、渔船和油轮。船舶在巡航和停泊工况下的污染排放占比最高,分别为40%~44%和23%~46%;而机动操作状态时的排放占比较低,达到14%~37%。运用WRF-CMAQ模式模拟分析了青岛港船舶废气排放对市环境空气质量的影响,基线内加基线外12海里以内船舶排放对青岛市SO_2、NO_2、PM_(2.5)的贡献比例分别达到15.96%、12.47%、4.09%,贡献浓度分别为3.12、4.02、1.84μg/m~3。  相似文献   

7.
结合在线监测和自动识别系统分析东海沿岸船舶排放特征   总被引:1,自引:0,他引:1  
海运排放大气污染物对空气质量和气候具有重要影响,但是由于船舶类型及其运行工况的复杂性,人们对船舶排放特征的认识仍然不足.东海沿岸是全球航运活动最为密集的地区之一,汇集了各种国内国际运输船只.选取宁波舟山港作为研究地点,使用在线仪器长时间测量主要的环境大气气体和颗粒污染物,并利用自动识别系统(AIS),获得每种船舶的速度.根据后向轨迹区分出:1受船舶排放影响主导的时期(夏季风,由处于完全运行或停泊的船舶占主导地位);2受内陆气流影响主导的时期(冬季风).结果表明二氧化硫(SO2)、氮氧化物(NOx)和黑碳气溶胶(BC)的排放与高速运行的船舶相关,而一氧化碳(CO)可能与较低的运行速度的船舶有关,总颗粒物(PM)与船舶速度没有显著相关关系.主要污染物在巡航工况下的排放增强因子约为怠速工况1~4倍.研究通过对直接环境背景下船舶排放进行原位观测,为评估船舶排放清单提供重要参考.  相似文献   

8.
广东省船舶排放源清单及时空分布特征研究   总被引:12,自引:3,他引:9  
分别采用基于船舶引擎功率和耗油量的排放因子法,估算了广东省地区2010年的船舶排放清单,并选取客货运输吞吐量、航道通航能力因子和港口地理坐标等数据作为权重因子,研究了该地区各类船舶排放的时空分布特征.结果表明,广东省各类船舶在2010年的SO2、NO x、CO、PM10、PM2.5和VOCs排放总量分别为14.6×104t、23.1×104t、3.0×104t、7.9×103t、7.2×103t和9.3×103t.广东省客货运输船舶月排放波动较小;渔业船舶在1月、4月和11月份的排放比例最高.广东省客货运输船舶水域排放集中在西江干线水道和珠江三角洲高等级航道网内,港口排放主要分布在广东省珠江三角洲沿海发达城市地区;渔船港口排放量呈显著的沿海条带状空间分布特征.  相似文献   

9.
利用便携式排放测试系统(PEMS),对一艘内河船舶燃用B10餐厨废弃油脂制生物柴油(生物柴油:柴油为1:9,体积比)进行实际工况排放测试。出港和进港工况下,CO、THC、NOx和PM瞬态排放速率波动明显,巡航工况下,CO、THC和PM瞬态排放速率较稳定,NOx排放随空气流量变化而在一定范围内波动;同燃用纯柴油时气态物和颗粒物排放相比,船舶燃用B10生物柴油时,在出港、巡航和进港工况,CO排放速率下降了20.37%、24.39%和6.05%,THC下降了8.2%、8.13%和25.23%,PM下降了53.11%、22.38%和36.55%,PN下降了14.17%、18.75%和46.47%;在出港和进港工况,NOx排放速率下降了54.28%和40.39%,在巡航工况,NOx上升了10.45%;燃用2种燃油排放颗粒物均随粒径呈双峰分布,峰值粒径大致相同,燃用B10生物柴油时核态颗粒物数量下降明显。试验表明,船舶燃用B10生物柴油能有效降低气态物和颗粒物排放。  相似文献   

10.
基于船舶自动识别系统(Automatic Identification System,AIS)数据表征船舶排放是目前船舶排放空间表征的主流方法,但AIS船舶轨迹点缺失会造成船舶排放量低估和船舶空间分布表征错误,进而影响船舶排放控制区的划分.为改进船舶排放空间表征,本研究以2013年广东省AIS船舶数据为例,采用基于时间和经纬度的三次样条方法对AIS船舶轨迹进行修复,结合动力法计算船舶排放,分析对比AIS轨迹修复前后船舶排放表征的差异,并利用空气质量模型和卫星观测评估AIS轨迹修复对船舶排放表征和广东沿海空气质量模拟的改进效果.结果表明:轨迹修复后广东省海域船舶轨迹点总数由4685773个增至5746664个,船舶NOx排放量增加了0.6%.对于轨迹点与排放缺失集中的粤东海域,轨迹修复后船舶轨迹点数增加了88%,NOx排放量在广东省船舶排放量的占比提升至22%,特别是在粤东重点修复海域NOx排放量增加了2.7倍.原始轨迹在广东省海域较为稀疏,在粤东海域有明显轨迹缺失;轨迹修复后广东省海域船舶轨迹更为密集,粤东海域船舶轨迹得以补充,船舶排放空间分布更连贯.对比模拟结果与卫星观测结果,轨迹修复后粤东重点修复海域船舶模拟浓度与观测浓度的偏差由51%减至6%,总体上船舶排放模拟结果更接近卫星观测结果.  相似文献   

11.
厦门市船舶控制区大气污染物排放清单与污染特征   总被引:2,自引:2,他引:0  
以船舶自动识别系统(automatic identification system,AIS)数据,结合大量厦门港口实地调查信息,采用自下而上的动力法对在控制区内航行的船舶进行逐艘计算,得出2018年厦门市船舶控制区大气污染物排放清单,并详细分析了其污染物排放特征及时空分布.结果表明, 2018年厦门市船舶控制区内船舶污染物排放总量共16 413 t,其中进出港船舶污染物排放占82.2%,未进港船舶占17.8%,各污染物中以NO_x的排放量最大,占比达64.2%,不同航行状态下污染物排放量的顺序为停泊巡航低速巡航机动操控锚泊,控制区内船舶的主要污染来源于货船,并以集装箱船的污染物排放量为最大; 1 d中09:00~16:00处于船舶污染物排放高峰期,1 a中以2月的排放量为最低, 3月和5月出现排放峰值;空间特征上各污染物排放高值主要分布于主航道和港区海岸线.  相似文献   

12.
船舶排放是我国沿海地区重要的人为排放源,但现有的船舶排放评估研究大多只关注区域尺度的影响分析,而且忽视了排放清单的不确定性,这在一定程度上削弱了评估结果的可靠性.为此,本文利用WRF-SMOKE-CAMQ空气质量模型,定量评估了船舶排放及其不确定性对我国七大沿海港口城市夏季空气质量的影响,结果表明:船舶排放对我国主要沿海港口城市的SO2、NOx和PM2.5浓度贡献范围分别为16.5%~62.5%、21.9%~72.9%和5.9%~26.0%,尤其对宁波、青岛和深圳等港口城市空气质量的影响显著,主要是由于港口较高的船舶排放以及气象传输两方面原因造成的;如果考虑船舶排放清单的总量不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.0~3.1,2.1~5.5,0.3~0.9μg/m3的波动;考虑船舶排放清单的时空分配不确定性,船舶排放对沿海港口城市夏季SO2、NOx和PM2.5的影响分别呈现1.9~15.7,5.1~29.3,0.6~2.5μg/m3的波动.可见,船舶排放清单的不确定性对沿海城市船舶排放贡献影响量化有明显的影响.所以在评估船舶排放对港口城市空气质量的影响时,要考虑船舶排放清单的不确定性,尤其是时空分配的不确定性.而合理的时空分配能够提高船舶排放清单的质量和对沿海空气质量模拟的准确性.  相似文献   

13.
李盛泉 《交通环保》2003,24(1):29-32
介绍了渤海的污染现状,分析了船舶排放对渤海污染的重要影响,在此基础上,通过对《MMRPOL 73/78》中特殊海域与一般海域不同排放要求的对比,阐述了将渤海划定为《MARPOL 73/78》特殊区域的重要现实意义和必要性。  相似文献   

14.
江苏省内河船舶大气污染物排放清单及特征   总被引:2,自引:2,他引:0  
徐文文  殷承启  许雪记  张玮 《环境科学》2019,40(6):2595-2606
基于船舶签证、过闸数据以及AIS数据,采用船舶引擎功率的方法建立了江苏省内河船舶大气污染物排放清单.结果表明,2014年江苏省内河船舶共排放NO_x18. 71万t、SO_25. 13万t、PM_(2.5)0. 82万t、PM_(10)1. 10万t、HC 0. 64万t、CO 1. 67万t和CO_21 051. 13万t;对于内河船舶(不计长江),干货船污染物排放量最大,吨位范围200~600 t的污染物排放量最高,船舶正常航行工况下污染物排放量最高;对于长江江苏段抵港船舶,非集装箱货轮污染物排放量最高,装卸货工况下污染物排放量最高,其次是巡航状态,对于不同动力单元,主机和辅机是主要排放单元;对于长江江苏段过境船舶,非集装箱货轮的污染物排放量最高,其次为油轮,缓慢行驶状态下各污染物排放量均为最高,对于不同动力单元,SO2、PM_(2.5)和PM_(10)主机排放量高于辅机;京杭运河苏北段航道单位航道长度大气污染物排放量较大,苏南航道次之;江苏省内河船舶排放受时间影响较小,除2月排放占比略小外,其余月份排放占比基本较为均匀,均在8%~10%左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号