首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2018年12月15~18日使用激光雷达在河北望都观测气溶胶与O3,利用气溶胶消光系数廓线判断边界层的变化,进而研究大气边界层对于近地表层(300m)O3浓度的影响.结果表明,边界层主要影响O3的干沉降以及高空O3的垂直输送,在受本地污染控制时,近地表O3浓度受干沉降控制明显,随着边界层高度的下降而减少;西北地区气团占主导时,O3浓度主要受水平传输以及高空垂直输送影响.  相似文献   

2.
了解O3污染的垂直分布对于充分理解O3在大气中的扩散和输送具有重要意义.本研究利用最优插值法实现了高塔与激光雷达O3观测数据的融合,并基于垂直观测融合数据对2021年10月广州市一次O3污染过程进行分析,结果表明:(1)不同时刻的O3浓度均大致呈现出随高度上升先升后降的变化趋势,平均相对高值主要分布在300~500 m,最高值出现在400 m附近.(2)结合边界层高度分析可知,白天的O3生成和扩散基本均在边界层以内进行,夜间普遍存在O3残留问题,而在污染日尤其显著,表明白天光化学反应生成的高浓度O3是夜间残留层中O3的来源.(3)污染期间,不同大气污染物形成了不同的垂直分层,具体表现为较高浓度的PM2.5和NO2在中、低层积累,而高层(约200~600 m)则维持高浓度O3的污染垂直分布结构.推测原因在于南北气流对峙及夜间稳定...  相似文献   

3.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一.  相似文献   

4.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一.  相似文献   

5.
随着京津冀区域臭氧(O3)污染问题日渐突出,探究和分析京津冀区域O3变化特征和污染过程形成原因对区域大气污染防治工作具有重要意义.观测结果显示,春夏季京津冀区域较高的O3浓度呈现南高北低的分布,北京、天津和石家庄这3座城市O3高浓度往往伴随着偏南风的影响.基于WRF-Chem模式模拟和过程分析技术对2019年京津冀区域O3变化特征和成因进行了深入分析,典型城市化学过程、垂直混合和输送的日变化有着鲜明的季节变化差异.其中在夏季午后化学过程是各城市O3浓度增加的主要来源;垂直混合导致天津和石家庄O3浓度增加,但使得北京O3浓度减少;天津和石家庄存在净输出,而北京则为净流入.通过对比分析O3污染和清洁过程结果表明,化学过程主导北京和石家庄污染过程午后O3浓度增加,天津则为垂直混合,此外,北京和石家庄存在O3净输入,天津则为净输出;而清洁过程中,垂直混合主...  相似文献   

6.
使用WRF-CMAQ模式模拟广东省2021年3月25~27日区域O3污染过程,模拟效果良好.在珠三角范围内O3污染消退时,韶关市出现了异常O3污染.以韶关为主要关注对象,针对珠三角地区向韶关的O3输送过程进行分析与研究,利用CMAQ模式中的过程分析(PA)与来源解析(ISAM)对污染传输与发展过程进行定量评估.结果表明:3月25日珠三角地区产生的O3污染气团在高空残留,25日夜间至26日上午输送至韶关并下传,高空水平输送至韶关上空的O3有66.1%下传,物理输送过程起主导作用;26日来自广州、东莞、清远、佛山的O3比25日增加了12倍,区域输送是韶关市异常O3污染的主要贡献,广州市与东莞市是区域输送的主要源地;韶关市地处盆地,易受到域外输送影响,O3污染防治应注重区域的协同减排,联防联控.  相似文献   

7.
采用WRF-Chem模式中的3种边界层方案YSU、MYJ和ACM2对2019年6月京津冀及周边地区典型O3污染月份开展模拟研究.详细对比了各方案对地面气象要素、NO2和O3浓度时空分布,以及温湿风要素和O3浓度垂直分布的模拟效果.结果表明:3种方案对地面气象要素的时空分布和温湿风要素的垂直变化模拟较为合理.MYJ方案模拟地面气象要素整体效果最佳.各方案对边界层高度的日变化特征模拟较好,相关系数为0.58~0.69,但存在白天偏高、夜间偏低的现象,YSU方案相比效果最佳.3种边界层方案对NO2浓度模拟普遍高估,而O3模拟结果则出现低估.白天模拟偏差较小而夜间偏差较显著.模拟最佳的是ACM2,其次为YSU和MYJ.3种方案均较好地模拟出了O3的垂直分布特征,但整体低估了O3浓度.对上午O3垂直分布的模拟差异较下午更为明显.此外,基于YSU方案设置了3个敏感实验,通过调整化学模块所用的湍流扩散系数阈值,对比分析了垂直混合过程改变对O3浓度模拟的影响,模拟的变化只反映由于边界层的垂直混合过程改变造成的污染差异,而不是由于热动力场的调整造成的变化.模拟结果表明3个方案均可改善区域上地面NO2和O3的模拟性能,尤其是对原3种边界层方案模拟O3均明显低估的华北平原地区提升效果最显著,平均偏差降低了23.7%.在垂直方向上,湍流扩散系数阈值的调整增加了早间近地面模拟的O3浓度,改善了模拟偏低的现象,但同时增大了高层O3浓度的负偏差.敏感性方案显著改善了夜间的模拟,白天则并不明显.这些结果显示出湍流扩散系数对O3垂直混合的重要影响.因此,改进湍流扩散系数的参数化对O3模拟是必要的.  相似文献   

8.
利用2017~2019年中国生态环境监测总站逐小时地面臭氧(O3)和二氧化氮(NO2)数据, 结合再分析气象数据集,分析了从汾渭平原至黄土高原三个不同海拔高度的典型城市郊区(西安:500m、榆林:1100m和鄂尔多斯:1300m)O3浓度的季-月-日变化特征,以及导致三地O3浓度差异可能的化学和气象成因.结果表明:与其他季节比较,夏季三地的O3浓度都较高且差值较小,其中西安昼间O3的净增量最大、夜间净减量也最大且前体物NO2浓度最高,说明西安夏季白天O3光化学反应最强烈、夜间NO滴定O3效应也最强,榆林其次、鄂尔多斯最弱;冬季三地的O3浓度都较低且差异较大,其中西安最低、鄂尔多斯最高,可能是由于冬季白天光化学反应都弱、夜间NO滴定O3效应差异和高海拔地区背景O3浓度高共同导致的,反映了三地O3浓度水平差异不仅受不同NOx水平下局地化学作用影响,还由区域背景值决定.分析还发现,高海拔的鄂尔多斯和榆林二地O3浓度在上午升高的速率快于西安,与二地边界层向上发展的速率一致,可能是由于此时的夹卷效应将高海拔自由对流层的高背景O3向下湍流输送所致.在每个季节雨天夜间,三地的O3浓度均高于其阴、晴天,但是这一差异在西安较弱,而在榆林和鄂尔多斯较强,这进一步意指高海拔地区近地面O3在雨天夜间更强烈地受到高浓度背景O3的影响,一方面是通过降水的拖曳作用,另一方面是因为雨天夜间NO的滴定作用减弱.本研究通过长期观测资料分析,推测了不同海拔高度对近地面O3的影响机制,还需在更多地区进行分析和利用模式开展验证.  相似文献   

9.
为了解化工园区大气污染情况,使用自主研制的微型大气检测仪结合无人机研究化工园区臭氧(O3)垂直廓线,在2020年8月~2021年1月于杭州湾上虞经济技术开发区开展了12d无人机外场观测实验.各观测日从08:00~18:00每隔1h进行一次飞行观测,每次观测分别获得了离地面0,50,100,200,300,400,500m的O3、总挥发性有机物(TVOCs)和二氧化氮(NO2)浓度.结果表明:受气象因素、地面工厂排放以及早晚出行高峰的影响,TVOCs和NO2浓度整体随高度增加而下降,其中NO2浓度随高度上升而下降的幅度较明显,在0m处浓度为19.7~59.1μg/m3,500m处为5.9~21.7μg/m3,下降率为40~70%,TVOCs和NO2浓度都呈现出早晚高、正午低的日变化趋势,此外可能受逆温层的影响导致个别天数NO2浓度在400~500m不降反升;O3受前体物光化学反应、太阳辐射强度及平流层输送的影响,其浓度随高度增加而下降,平均浓度在0m处为49.2μg/m3,500m处为98.4μg/m3,O3日变化浓度在15:00~17:00达到峰值.TVOCs和O3、NO2和O3在各高度浓度均呈负相关,受不同季节气象因素差异和冬季取暖排放增加的影响,O3浓度季节变化为夏>秋>冬,TVOCs和NO2浓度为冬季>秋季>夏季.后向轨迹聚类分析表明化工园区本地O3浓度会受区域输送影响升高,在冬季时由于气温低不利于前体物生成O3,本地O3浓度受区域输送影响较夏季小.  相似文献   

10.
利用安徽寿县地区2016年12月16~17日的观测资料与模拟资料,分析了一次夜间边界层低空急流对PM2.5扩散的影响.此过程中,急流分布范围广,强度大,最大风速可达10~12m/s,而且风向随高度有明显转向,高低层风向差可达90°.急流发展过程中,急流轴基本位于200m以下,急流的最小风速高度出现在400~800m之间.通过分析可知,对于不同高度,急流对污染物扩散的影响存在明显差异.地面至急流轴范围内,PM2.5总体减少.急流的出现使湍流混合明显增强,在湍流作用下污染物向上混合,使该层PM2.5显著减少,净质量通量的峰值可达-103×10-3μg/(m2·s).急流的水平输送可带来上风方较为清洁气团,同样减少了该层的PM2.5浓度.但与湍流作用相比其影响较小,净质量通量仅为-2.9×10-3μg/(m2·s).急流存在时,还会加强向下的垂直风速,在垂直输送作用下,上层污染物向下输送,增加了该层PM2.5浓度,净质量通量约为11×10-3μg/(m2·s).急流轴至风向转变高度之间,PM2.5总体增加.这是由于湍流作用将低层高浓度污染物输送至该层,使PM2.5浓度增加,净质量通量约为23.9×10-3μg/(m2·s);水平输送作用使该层PM2.5浓度略有增加,净质量通量约为2.3×10-3μg/(m2·s);而垂直输送作用带来了高处较为清洁的气团,减少了PM2.5浓度,净质量通量约为-6.6×10-3μg/(m2·s).风向转变高度至LLJ最小风速高度之间,PM2.5总体增加.湍流作用仍占主导,净质量通量约为17.8×10-3μg/(m2·s);垂直输送作用稍有贡献,净质量通量约为1.4×10-3μg/(m2·s);而水平输送起减少作用,净质量通量约为-3.7×10-3μg/(m2·s).  相似文献   

11.
利用2017~2019年夏、冬季天津市大气污染物监测和气象观测数据,基于天津气象铁塔垂直观测,针对大气垂直扩散条件对PM2.5和O3的影响进行研究.结果显示:近地面PM2.5浓度随高度的升高而下降,O3浓度则随高度的升高而上升,受大气垂直扩散条件的季节和日变化影响,冬季,地面与120m PM2.5质量浓度相关明显,与200m PM2.5质量浓度无明显相关.夏季,120m和200m PM2.5质量浓度相关系数为0.72,午后通常出现120m和200m PM2.5质量浓度高于地面的情况.夏季,不同高度O3浓度差异小于冬季,地面与120m高度O3浓度接近.以大气稳定度、逆温强度和气温递减率作为大气垂直扩散指标,对地面PM2.5和O3垂直分布具有指示作用.冬季,TKE与PM2.5质量浓度相关系数为到-0.65,夏季,TKE与ΔPM2.5相关系数为-0.39.夏、冬季TKE与地面O3浓度的相关系数分别为0.46和0.53,与ΔO3的相关系数分别为0.73和0.70.弱下沉运动对地面O3浓度影响较强,40m高度垂直运动速度与地面O3浓度的相关系数在冬、夏季分别为-0.54和-0.61.对冬季典型PM2.5重污染过程的分析发现,雾霾的生消维持和PM2.5浓度的变化与大气稳定度、气温垂直递减率和TKE的变化有直接关系.对夏季典型O3污染过程的分析发现,近地面的O3污染的形成与有利光化学反应的气象条件密切相关,同时,垂直向下输送和有利垂直扩散条件对O3污染的形成和爆发影响明显.  相似文献   

12.
广州城区近地面层大气污染物垂直分布特征   总被引:7,自引:1,他引:6       下载免费PDF全文
为更好地了解广州城区近地面层大气污染物的扩散与输送过程,利用广州塔4层大气污染物垂直梯度观测平台(高度分别为地面、118、168和488 m)于2014年1月—2015年12月对多种大气污染物进行连续观测,分析了广州城区近地面层大气污染物的垂直分布特征.结果表明:①ρ(PM10)、ρ(PM2.5)、ρ(PM1)、ρ(NO2)和ρ(NO)随高度的上升而降低,其中ρ(PM10)、ρ(PM2.5)和ρ(PM1)在低层(地面点位)—高层(488 m点位)的递减率分别为35%、30%和26%,ρ(NO2)和ρ(NO)分别为75%和84%;ρ(O3)随高度上升而增加,其低层—高层的增长率为135%;ρ(SO2)和ρ(CO)则随高度上升先增后减.②除ρ(O3)外,其余污染物浓度均符合“冬强夏弱”的季节特征,ρ(O3)则在夏秋季较高,春冬季较低.冬季ρ(PM10)、ρ(PM2.5)、ρ(NO2)和ρ(NO)高、低层间差异为全年各季最大,分别为38.6、18.5、49.4和31.9 μg/m3.③各污染物小时浓度日变化特征均不同程度地受混合层发展过程的影响,各高度污染物浓度在一天中混合层高度最高的时段(12:00—17:00)最接近,而在其余时段分层较明显.除O3外,其余污染物质量浓度在中、低层大致呈早晚双峰分布,而在高层大致呈单峰分布.ρ(O3)则在各层均保持单峰分布,峰值一致出现在14:00.④对一次典型污染过程分析发现,不同高度的ρ(PM2.5)和ρ(NO2)最大差值分别可达183.0和148.0 μg/m3,ρ(PM2.5)显著地受到本地近地面污染源的影响,污染物高浓度区域主要集中在488 m以下.   相似文献   

13.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

14.
基于2019年8月四川盆地内国控站臭氧(O3)浓度观测数据,选取了3次不同程度的区域性持续性O3过程,利用再分析资料对3次过程的O3浓度垂直变化时空差异及其气象成因进行分析研究.结果表明:(1)3次过程O3浓度在垂直方向上的分布呈先增后减的相似特征,在900~850 hPa达到极值;对流层O3集中在500 hPa甚至700 hPa以下,且随着O3浓度等级的增加,垂直向上的扩散更加明显.(2)3次过程温度和相对湿度有明显的差异,温度与O3浓度呈正相关,与相对湿度呈负相关,高温低湿更有利于O3生成.(3)Ⅰ~Ⅱ级过程盆地内地面以东北风或偏北风为主,出现气旋性环流及风向辐合,容易造成风向下游地区O3污染积聚;Ⅲ级过程地面多偏南风或东南风,使污染物易向盆地内西北侧传输.(4)垂直运动的强弱是造成3次过程O3浓度差异的重要原因,Ⅰ级过程存在较强的上升运动,有利于O3  相似文献   

15.
采用大气化学模式定量估算2019年4月~9月区域输送对京津冀区域,特别是天津市O3浓度的影响,分析天气形势和气象条件与区域输送的关系。结果显示,京津冀区域13个城市O3以区域输送贡献为主,不同城市O3差异较大,天津本地贡献占比24%,区域输送以京津冀区域其他城市和山东为主,共贡献48.3%。低压、低压前和低压后形势下,O3区域输送占比最高。途径天津偏南区域的气流是造成天津高浓度O3污染的重要因素,也是区域输送的主要路径。随着O3浓度升高,输送贡献占比呈逐步上升趋势,重度污染时本地生成与区域输送贡献相当。一次典型O3污染过程分析表明,高温强辐射天气和有利的天气形势促进O3本地生成,西南气流和弱下沉气流下的区域输送共同维系了这场持续3d的连续污染过程。  相似文献   

16.
于2016年在广东大气超级监测站,开展4个季节的VOCs、O3和PM2.5长时间、高分辨率的连续观测,共获得2142组有效数据,并利用OH消耗速率(LOH)、臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAFP)3种评价方法以及HYSPLIT模型,分析珠三角典型地区大气污染时段VOCs特征及化学反应活性.结果表明,PM2.5高值时段,除异戊二烯外,其余各种VOCs的平均浓度水平高于O3高值时段.3种情境中,VOCs化学反应活性由强到弱依次为PM2.5高值时段、观测期间、O3高值时段.在O3高值时段,来自珠三角东部地区气团中VOCs的浓度水平最高,而来自珠江西岸气团中VOCs的LOH和OFP最高,其次为来自珠三角东部的气团,这说明在珠江西岸和珠三角东部地区有大量的强化学反应活性污染物排放.来自北方内陆地区气团中苯系物占比较高,其SOAFP最高.在PM2.5高值时段,来自南部海洋气团中VOCs的混合比、LOH、...  相似文献   

17.
佛山春季两次典型臭氧污染过程分析   总被引:5,自引:5,他引:0  
近地层臭氧污染与气象条件密切相关,为了解珠三角地区春季臭氧(O3)污染的气象成因,选取了2020年4月9日和28日佛山地区春季两次典型O3污染过程进行对比分析.结果表明:(1)小风、低湿和高温是造成佛山春季O3污染发生的气象成因.(2)两次过程各站点O3峰值浓度大致出现在16:00—18:00,较年均统计偏晚1 h左右,最高气温明显低于夏、秋季;大多数站点日变化以单峰型为主,部分站点受局地风场和城市下风向传输影响呈现“倒U型”和“双峰型”.(3)垂直探测分析表明,4月9日O3污染过程主要由局地反应生成,垂直方向下沉气流主导,污染主要积聚在1000 m以下的近地面层;28日受局地生成和垂直交换作用影响,O3污染自下而上扩展,且早间残留层下传影响显著.(4)与长距离和高层输送相比,短途和低层传输对局地O3污染发生的作用更为明显(输送频率可达60%以上).春季佛山地区O3污染的主要传输源为珠三角东部和南部地区,污染防控...  相似文献   

18.
结合天气形势,地面观测资料和WRF-CMAQ模式,分析了2017年7月8~15日成都市一次罕见持续O3污染过程的特征及成因,量化了各个物理化学过程对此次污染过程的相对贡献,并通过敏感性实验分析了四川盆地内O3及其前体物的区域传输和本地光化学反应对此次污染过程的影响.结果表明,此次O3持续污染过程主要是因为四川盆地内盛行偏东风,导致盆地东部城市群的O3及其前体物经区域输送到成都及周边地区,加之成都市出现小风、气温升高等气象条件进而形成,属于典型的传输性爆发污染.持续污染形成的主要物理化学机制体现为日间气相化学过程贡献为稳定的正值,加之输送过程贡献出现爆发式升高,进而导致近地面O3小时净增量迅速上升且高达50μg/(m3·h),随之O3浓度迅速响应,产生爆发式增长.此外,敏感性实验结果显示此次成都市O3持续污染的形成受区域输送影响较受本地光化学反应影响更为明显.O3污染爆发前上游地区高浓度O3及其前体物沿流场输送并在成都及周边地区不断积累,导致日间O3浓度不断升高.  相似文献   

19.
基于空气质量监测、地面气象资料、风廓线雷达观测等数据和HYSPLIT模型,对2020年8月26日至9月8日2008号台风“巴威”、 2009号台风“美莎克”和2010号台风“海神”影响期间我国中东部地区的O3污染特征及成因进行了分析.结果表明“,三连击”台风期间京津冀及周边地区和长三角地区出现O3污染的站点数均超过50%“,海神”影响期间两个区域O3污染日数分别达到2.22 d和2.97 d,持续性特征显著.台风位置对O3浓度影响明显,当台风位于24 h和48 h警戒线之间时,京津冀及周边地区O3浓度最高;当台风移动至34°N以北时,长三角地区最易于出现区域性O3污染.上海O3污染主要出现在台风西侧偏北气流控制下,来自上游的区域传输对O3及前体物浓度升高影响明显;1 000 m以下的下沉气流使O3在夜间维持较高浓度.济南O3污染期间大气中低层盛行下沉气流.8月28~30...  相似文献   

20.
孙玉环  杨光春 《中国环境科学》2021,40(12):5531-5538
应用三维空气质量模型(Model-3/CMAQ)和积分过程速率(IPR)分析工具对2017年7月22~31日夏季4次台风持续影响下中山市7月首次出现的持续6d的O3污染事件进行了详细分析,识别了O3 8h浓度最大值时段主导的大气物理过程和大气化学过程,并计算了不同源、汇过程对本地O3浓度的贡献.研究结果表明,污染时段化学过程对O3的源贡献高于非污染时段,化学过程贡献增加,说明光化学反应过程更加活跃;台风带来的外来气团经过上风向高污染物排放区域时,化学过程贡献显著上升,与非经过高污染物排放区域相比,污染时段的化学过程对中山市O3源过程的浓度贡献高2.4%~6.5%;污染时段,水平输送对中山市大气O3源过程的浓度贡献在56.6%~92.6%之间.因此,污染期间强化本地排放源的管控,减少O3生成贡献的同时,结合区域气团路径分析,精准识别污染协同管控区域,上风向污染物高排放区域实施协同减排措施,实现区域联防联控.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号