首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
珠江三角洲地区铺装道路扬尘排放因子与排放清单研究   总被引:12,自引:6,他引:6  
对珠江三角洲地区不同等级道路共采集了65个道路扬尘样品,并调研了道路的车流量、车辆构成和道路长度等有关活动水平数据,采用美国环保署推荐的AP-42方法估算了该地区不同等级道路扬尘排放因子和排放量,并分析了道路扬尘排放的时空特征与不确定性范围.结果表明:高速公路、一级、二级、三级和四级道路尘负荷分别为1.05 g·m-2、0.99 g·m-2、1.30 g·m-2、1.35 g·m-2和1.45 g·m-2;不同等级道路扬尘总悬浮颗粒物(Total Suspended Particulate,TSP)、PM10和PM2.5的平均排放因子分别为8.32 g·VKT-1 (Grams per Vehicle Kilometer Traveled)、1.60 g·VKT-1和0.39 g·VKT-1,对应的排放量分别为2755.1×103 t、528.8×103 t和127.9×103 t,其定量不确定性范围分别为-91.7%~175.1%、-91.6%~178.9%及-91.5%~176.5%.  相似文献   

2.
基于积尘负荷的西安市铺装道路扬尘排放研究   总被引:1,自引:0,他引:1  
近年来城市颗粒物污染问题日渐突出,严重影响着人们的环境幸福指数和对美好环境的期待.道路扬尘作为城市扬尘的重要组成部分,对颗粒物污染的贡献不容小觑.在此背景下,采用积尘负荷法采集西安市快速路、主干道、次干道、支路等4种类型25条道路的道路扬尘样品,并分析采样速率、采样次数等因素对采样效率的影响.在此基础上,计算得到西安市各类型道路的平均积尘负荷,结合车流量、车重、道路长度,通过《扬尘源颗粒物排放清单技术指南》中的公式计算得到各种类型道路TSP、PM10、PM2.5的排放系数及排放量.结果显示:采样速率为1.0 m2·min-1,采样次数为两次可满足采样要求.不同类型道路积尘顺序为:支路(4.18 g·m-2)>次干道(2.80 g·m-2)>快速路(1.49 g·m-2)>主干路(1.34 g·m-2);道路积尘TSP、PM10、PM2.5的平均排放系数分别为6.066、1.542和0.447 g·km-1.快速路和主干路的扬尘排放系数较小,支路的扬尘排放系数次之,次干路的扬尘排放系数较大.采用Monte Carlo方法对TSP、PM10和PM2.5的排放量进行不确定性分析,在95%的概率分布范围下,三者定量不确定性均为-16.88%~17.96%.  相似文献   

3.
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2.5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2.5夜间平均质量浓度为232 μg·m-3和132 μg·m-3,分别高于白天的PM10(194 μg·m-3)和PM2.5(107 μg·m-3);除夕后颗粒物日平均质量浓度为252.3 μg·m-3 (PM10)和123.8 μg·m-3 (PM2.5),分别高于除夕前的166.7 μg·m-3(PM10)和106.8 μg·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响,但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

4.
为了解南昌市道路扬尘和土壤风沙尘PM2.5中多环芳烃(PAHs)的来源和健康风险,利用颗粒物再悬浮系统采集PM2.5样品,测定了PM2.5中16种优先控制的多环芳烃的含量.结果表明,南昌市道路扬尘PM2.5中ΣPAHs含量范围为48.85~166.16μg·kg-1,平均值为(114.22±39.95)μg·kg-1,土壤风沙尘PM2.5中ΣPAHs含量范围为31.05~62.92μg·kg-1,平均值为(40.79±9.39)μg·kg-1.道路尘和土壤风沙尘PM2.5中的PAHs都是以4~5环组分为主.主成分分析/多元线性回归分析结果表明,南昌市道路扬尘PM2.5中PAHs的来源包括机动车的排放和燃煤源与石油泄漏,贡献率分别为51.7%和48.3%,总估计值与实际值的线性拟合有很好的一致性.对于儿童和成年男性,不同暴露途径的PAHs致癌风险值从大到小依次是皮肤接触 > 摄食 > 呼吸吸入,而成年女性则表现为摄食 > 皮肤接触 > 呼吸吸入.各暴露途径中,PAHs对成人的致癌风险均高于儿童.所有人群中,PAHs的总致癌风险值均低于美国EPA推荐的致癌风险阈值10-6,没有致癌风险.  相似文献   

5.
北京铺装道路交通扬尘排放规律研究   总被引:25,自引:7,他引:18  
樊守彬  田刚  李钢  邵霞 《环境科学》2007,28(10):2396-2399
根据对北京82条城区道路和56条郊区铺装道路路面尘负荷的监测,依据AP-42交通扬尘排放因子模型,针对道路类型、车流量、道路位置等研究了北京交通扬尘的排放规律,分析了2种确定路面尘负荷的方法.结果表明,北京城区快速路、主干道、次干道和支路路面尘负荷分别为:0.17、0.34、1.48和2.60 g/m2,北京郊区国道、省道、县道、乡级路和县城内城市道路路面尘负荷分别为:0.18、0.56、1.58、3.10和1.58 g/m2;根据路面尘负荷与车流量及道路类型的相关性分析,在城区利用尘负荷与车流量的关系式对尘负荷进行赋值相关性较好,在郊区利用不同类型道路尘负荷平均值对道路尘负荷进行赋值相关性较好;路面尘负荷及排放因子随着车流量的增大而降低,而交通扬尘PM10排放强度随车流量的增大而增强;城区主干道交通扬尘排放PM10强度最大为130.2 kg/(km·d),郊区国道交通扬尘PM10排放强度最大为43.8 kg/(km·d).  相似文献   

6.
李冬  陈建华  张月帆  高忠阳  高健  张凯  竹双 《环境科学》2021,42(4):1642-1648
粒度乘数是表征道路扬尘中颗粒物粒径分布特征和计算道路扬尘排放量的重要参数.为实现粒度乘数本地化,采用AP-42法和TRAKER法于2019年3月对保定市城区不同类型的道路进行采样和走航监测,利用校正公式计算得到道路扬尘PM2.5粒度乘数(K2.5),对比了两种方法测定的K2.5结果,分析了保定市道路扬尘粒度乘数特征.结果表明:①基于AP-42法和TRAKER法获取的保定市道路积尘的K2.5平均值分别为0.21 g·VKT-1和0.23 g·VKT-1.两种方法获得的道路积尘K2.5具有较高的线性相关性,相关系数约为0.6.分别利用两种方法获得的K2.5计算道路扬尘PM2.5排放因子值差异较小.说明利用基于激光传感器的TRAKER法能够满足测量并计算道路扬尘K2.5的要求.②保定市不同类型道路积尘K2.5特征按其值大小排序表现为:快速路 < 次干道 < 支路 < 主干道,存在显著差异;③保定市各道路扬尘K2.5平均值高于0.15 g·VKT-1,说明若直接借鉴美国环保署的推荐值(K2.5=0.15 g·VKT-1)进行排放清单计算,将会低估保定市的道路扬尘排放量,进而增加排放清单的不确定性.保定市K2.5相对较高,说明保定市道路积尘中微颗粒物含量较多,道路扬尘对城市PM2.5的贡献可能较大.  相似文献   

7.
受到供暖影响,北方城市秋冬季的大气细颗粒物(PM2.5)浓度升高,空气污染加剧.利用气溶胶化学组分监测仪、七波段黑碳仪以及大气多金属元素在线监测仪于2019年10月25日至11月17日在西安市开展高时间分辨率PM2.5化学组分在线监测,分析采暖季过渡期PM2.5污染特征,同时结合正定矩阵因子分解模型解析PM2.5来源.结果表明,观测期间ρ(PM2.5)平均值为(78.3 ± 38.5)μg·m-3,主要化学组分为有机物(OA)、二次无机离子(SIA)和粉尘,其占比分别为38.7%、31.6%和21.2%,其中ρ(SO42-)、ρ(NO3-)和ρ(NH4+)平均值分别为(4.0 ± 3.1)、(14.9 ± 13.7)和(5.8 ± 4.8)μg·m-3,主要金属ρ(K)、ρ(Ca)和ρ(Fe)平均值分别为(1.0 ± 0.4)、(1.5 ± 1.1)和(1.4 ± 0.9)μg·m-3,BC(贡献率为5.7%)、Cl-(贡献率为1.3%)及微量元素(贡献率为1.5%)对PM2.5的贡献率相对较低.在污染发展和维持阶段,OA和SIA浓度的增加幅度可达137.7%~537.0%,在污染消散阶段则仅有粉尘浓度呈增长之势.来源解析结果显示二次源、生物质燃烧源、扬尘源、机动车源、工业源和燃煤源是观测期间PM2.5的主要来源,分别贡献了29.1%、21.1%、15.3%、12.9%、11.4%和10.2%,其中二次源和生物质燃烧源在污染发展和维持阶段贡献率较高,扬尘源在污染消散阶段贡献率较高.  相似文献   

8.
采用涡度相关法对青海湖东北岸地区草甸化草原生态系统的CO2 通量进行了观测,结果表明: 在生长季节(5~9 月),就日变化,08:00~19:00 为CO2 净吸收,20:00~07:00 为CO2 净排放,CO2 通量 净吸收峰值一般出现在12:00 时,7 月份12:00 时CO2 净吸收峰值为1.41 g·(m2·h)-1;就月变化,7 月 是生长季CO2 净吸收最高月份,月CO2 净吸收量达到162.70 g·m-2,整个生长季CO2 净吸收的总量达 468.07 g·m-2。非生长季节(1~4 月及10~12 月),CO2 通量日变化振幅极小,最大CO2 净排放通量出现 在3 月,为0.29 g·(m2·h)-1,除12 月和1 月各时段CO2 通量接近于零,其余月份各时段CO2 净排放在 0.02~0.29 g·(m2·h)-1;3 月是全年CO2 净排放的最高月份,全月CO2 净排放量为72.33 g·m-2,整个非生 长季CO2 净排放为319.78 g·m-2。结果表明,无放牧条件下青海湖东北岸地区草甸化草原,全年CO2 净吸收量达148.30 g·m-2,是显著的CO2 汇。  相似文献   

9.
对大气污染物进行时空分布特征研究是开展大气污染防治的关键技术支撑.本研究基于广州市52个城市环境空气质量监测站点数据,采用系统聚类法、经验正交函数 (EOF)等方法分析了2016—2020年广州市PM2.5浓度的时空分布特征.结果表明:①2016—2020年广州市PM2.5污染改善显著,PM2.5年均浓度从35.9 μg·m-3下降至23.0 μg·m-3,达标比例由96.2%上升至100%;PM2.5干季平均浓度为湿季的1.54倍, 国控点超标天数为湿季的10.5倍;PM2.5浓度日变化曲线峰谷值浓度差由7.5 μg·m-3下降至3.9 μg·m-3,日变化幅度趋于平缓.②广州市PM2.5浓度最高值区主要分布在东西两侧,高值区域范围逐年减小,全市PM2.5浓度分布趋于均匀;采用系统聚类法可将广州市PM2.5分成北部、中北部、 南部、中南部4个污染区,其中,北部区PM2.5浓度下降率仅为其他污染区的1/2,推测其PM2.5浓度下降可能更多地由区域背景浓度的下降贡献;EOF分解前3模态累积方差贡献率达93%,分别可表征PM2.5总体污染程度、在南北方向上的区域输送特征及由外围区域向中心城区聚集的 污染特征.  相似文献   

10.
北京市城区两个典型站点PM2.5浓度和元素组成差异研究   总被引:7,自引:2,他引:5  
采用rp TEOM® 1400a颗粒物测定系统,于2008年1月到2010年12月,对北京城市生态系统研究站和北京教学植物园周边大气中细颗粒物(PM2.5)的浓度进行了连续监测.2010年,利用rp TEOM1400系统的旁路采样器同步采集PM2.5样品,经微波消解后采用ICP-MS和ICP-OES方法测定样品中的Al、As、Ca、Cd、Co、Cr、Cu、Fe、K、Mg、Mn、Na、Ni、Pb、Se、V、Zn等17种元素的浓度.结果表明,2008年1月至2009年3月,北京城市生态系统研究站的PM2.5平均浓度为59.1 μg·m-3,比北京教学植物园低36%.2009年4月至2010年12月,北京城市生态系统研究站的PM2.5平均浓度为95.5 μg·m-3,比北京教学植物园高60%.施工工地的土方作业可能对两站点PM2.5浓度的差异有重要贡献.地壳元素Al、Fe、Mg、K、Ca、Na浓度在两站点的差异最大.北京城市生态系统研究站其余污染元素的富集因子一般也高于北京教学植物园,尤其是Pb、As元素,可能与被污染土壤和建筑物等的二次污染有关.两站点的PM2.5污染状况均在建筑施工期较严重,来自地表和建筑工地的扬尘可能是造成PM2.5污染严重的主要原因.  相似文献   

11.
施工工地出口附近道路交通扬尘排放特征研究   总被引:16,自引:2,他引:16  
田刚  樊守彬  李钢  秦建平 《环境科学》2007,28(11):2626-2629
为了量化施工工地附近社会道路因施工运输车辆带泥及遗撒造成的二次交通扬尘,对4个典型工地出口2个方向社会道路尘负荷进行了采样分析,根据AP-42交通扬尘排放模型,计算和分析了工地出口附近道路交通扬尘排放特征.结果表明,工地出口附近道路尘负荷高于正常道路,随着距离工地出口长度的增加,尘负荷逐渐减小;工地出口2个方向共400 m道路上交通扬尘PM10排放因子为正常道路的2~10倍,因施工增加的排放量相当于422~3?800 m正常道路排放.根据以上结果,结合2002年北京市施工工地时空分布数据,经计算得出,2002年北京市城八区工地出口形成的二次扬尘相当于增加了道路总长度的59%.  相似文献   

12.
APEC会议期间北京市交通扬尘控制效果研究   总被引:8,自引:3,他引:5       下载免费PDF全文
为了评估APEC会议期间严格的交通扬尘控制措施的效果,选取北京地区不同类型道路,在会议之前和会议期间分别采集40个道路积尘负荷样品,并调研了道路车流量及车型比例等机动车活动水平变化.采用AP-42方法计算不同类型道路PM10排放因子和排放强度,基于Arc GIS平台应用自下而上的方法建立了排放清单,分析交通扬尘PM10排放的空间分布特征,评估APEC会议期间北京市道路交通扬尘控制效果.结果表明:APEC会议期间北京市日均车流量减少12%,快速路、主干道、次干道、支路、郊区道路的积尘负荷分别下降31%、58%、73%、54%和46%,PM10排放因子分别下降63%、67%、86%、63%和40%,排放强度分别下降73%、71%、87%、78%和49%.在空间分布上,城区道路交通扬尘PM10排放量减少77%,郊区道路减少49%.  相似文献   

13.
建筑工地大气降尘与总悬浮颗粒物相关性研究   总被引:13,自引:7,他引:6  
田刚  李建民  李钢  黄玉虎  闫宝林 《环境科学》2007,28(9):1941-1943
通过统计大量实测数据,对北京市建筑工地施工扬尘大气污染指标DF与TSP的相关性进行了研究.结果表明,建筑施工扬尘所产生的DF与TSP有较好的线性关系,建筑工地边界处DF与TSP的关系可以用cTSP=11.6×cDF表示.监测点与污染源的距离对相关系数影响较大,相关系数与距离成正比例;施工阶段对相关系数影响较小.  相似文献   

14.
北京市交通扬尘PM2.5排放清单及空间分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为建立一种自下而上的交通扬尘PM2.5排放清单方法,对北京市不同区域、不同类型道路的路面积尘负荷进行了采样和实验室分析,对各类路网的道路车流量和车辆类型进行了调查和统计,建立了北京市道路交通扬尘PM2.5排放清单,并对其空间分布进行了分析. 结果表明:北京市城区快速路、主干道、次干道、支路和胡同的交通扬尘PM2.5排放因子分别为(0.05±0.03)(0.09±0.05)(0.11±0.05)(0.16±0.14)和(0.27±0.20)g/(km·辆),相应各类型道路的交通扬尘PM2.5排放强度分别为(7.21±4.66)(5.27±3.03)(3.34±1.49)(2.84±2.49)和(0.54±0.40)kg/(km·d);郊区高速路、国道、省道、县道、乡道和城市道路的交通扬尘PM2.5排放因子分别为(0.10±0.03)(0.50±0.33)(0.39±0.37)(0.41±0.41)和(0.65±0.31)(0.19±0.08)g/(km·辆),各类型道路交通扬尘的PM2.5排放强度分别为(3.82±1.31)(10.00±6.58)(3.93±3.74)(1.64±1.63)(0.65±0.31)和(0.74±0.32)kg/(km·d). 北京市道路交通扬尘PM2.5的年排放量为13 565 t,从空间分布上看,郊区交通扬尘PM2.5年排放量、单位道路长度排放量以及排放因子均高于市区,而城区单位行政区面积的交通扬尘PM2.5排放量高于远郊区县. 从交通扬尘PM2.5排放的空间分布特征看,在继续加强城区交通扬尘控制的同时,应采取措施控制远郊区县公路的扬尘排放. 自下而上的交通扬尘PM2.5排放清单提高了排放的时空分辨率,能够识别路网中高排放的区域和路段,为交通扬尘总量管理和减排目标考核提供了一种技术手段.   相似文献   

15.
为探究长时间跨度的道路积尘变化特征,于2019~2020年对北京市大兴区内主要道路进行尘负荷检测,并于2020年四季收集道路PM10和PM2.5积尘样品,分析化学组分,建立成分谱.结果表明,2019年和2020年大兴区道路尘负荷年均值分别为1.05g/m2和0.74g/m2,2020年大兴区道路尘负荷较2019年下降29.5%.2019年道路尘负荷热点聚集区分散,大兴区内道路尘负荷高值区较多,2020年热点区集中出现在西北部,冷点区集中在东部区域.2020年大兴区道路扬尘排放因子低于2019年,大部分乡镇/街道中,2020年的扬尘排放因子和排放量低于2019年,呈现出东南部 > 中部 > 西北部的趋势.2020年大兴区道路扬尘排放量低于2019年,大兴区南部和西北部乡镇/街道内的扬尘排放量大于中部.受建筑施工活动影响.2020年大兴区道路PM10和PM2.5积尘化学组分中以土壤风沙和建筑施工活动相关的元素为主,Ca、Mg、Si、Al元素分别共占比39.39%和41.71%.对大兴区道路尘负荷进行针对性管控,首先需要对运输车辆进行及时冲洗,降低轮胎的尘土夹带量.其次应加强工地出口至附近1km的道路清扫保洁频次,将工地出口处道路尘负荷对周边道路的辐射影响降低.  相似文献   

16.
呼和浩特交通扬尘排放清单研究   总被引:4,自引:0,他引:4  
颗粒物污染是影响中国城市空气质量的首要因素,交通扬尘是城市大气颗粒物污染的主要来源之一,排放清单及排放特征研究是进行环境影响分析、控制措施成本效益分析、控制方案制定以及进行环境管理的基础。本文对呼和浩特城区典型道路路面尘负荷进行采样分析,现场调研不同类型道路车流量和车辆构成,应用AP-42排放因子计算典型道路交通扬尘排放因子,建立了基于G IS的排放清单数据库。结果显示:胡同的PM10排放因子最大,其次分别为环城路、支路、次干道和主干道;环城路的PM10排放强度最大,其次为主干道、次干道、支路和胡同;基准年2006年呼和浩特城区交通扬尘PM10排放量为22 715 t;从空间分布看,环城路以内网格排放源强较高,中心城区排放强度最大。  相似文献   

17.
天津城市交通道路扬尘排放特征及空间分布研究   总被引:7,自引:0,他引:7       下载免费PDF全文
许妍  周启星 《中国环境科学》2012,32(12):2168-2173
对天津市中心城区道路按照不同道路类型采取道路灰尘样本,研究统计不同类型道路车辆构成和车流量,依据美国EPA AP-42道路扬尘排放因子模型计算排放因子及排放量并应用Mapinfo软件得到了道路灰尘排放量的空间分布图.计算结果表明,天津市区环线、主干路、次干路、支路的道路粉尘负荷分别为0.30,0.40,0.64,2.02g/m2.环线的PM10的排放强度最高,为30.7kg/(km·d),其次为主干路、次干路和支路.天津市区一年道路灰尘的排放量为27985t,其中PM10排放量为5372t.中环线内和平区由于道路密集,交通扬尘排放量最高,向四周排放量递减.  相似文献   

18.
城市扬尘污染主要成因与精准治尘思路   总被引:1,自引:1,他引:0  
扬尘是城市环境空气颗粒物的重要贡献源.为进一步提升扬尘污染防治水平,梳理总结了城市扬尘排放与贡献特征,剖析了城市扬尘污染的主要成因,明确主要起尘情景和关键控制指标,并针对性提出主要防治措施建议,以进一步完善“精准治尘”的思路.各扬尘源类中,道路扬尘和施工扬尘是对城市环境空气颗粒物贡献的主要源类,其中通常以道路更为突出.生产活动、车辆扰动和风蚀是各类扬尘源的主要起尘情景.道路扬尘防治应以积尘负荷为关键控制指标,施工等其他扬尘源以场地内道路积尘负荷和裸露土壤(物料)面积为关键控制指标.围绕关键指标,进一步明确了控制道路积尘负荷的3种主要途径和控制施工等其他扬尘源的6项主要措施.此外,还针对扬尘治理所需保障措施提出了建议,为城市扬尘防治的实践应用提供参考.  相似文献   

19.
施工扬尘空间扩散规律研究   总被引:10,自引:5,他引:5  
通过检测建筑工地边界附近同一平面坐标1.5~4.1 m范围内不同高度处的降尘浓度变化,研究了建筑工地边界施工扬尘垂直扩散规律;通过监测建筑工地外同方向0~210 m范围内不同距离、相同高度(3 m)处的降尘浓度变化,研究了建筑工地施工扬尘水平扩散规律,通过数据回归分别得出了施工扬尘垂直、水平的扩散模型.结果表明,建筑工地边界同一平面坐标上方的施工降尘浓度与高度的2次方成反比关系,边界外部同一高度、同一方向的施工降尘浓度与监测点距工地中心距离的2次方成反比关系,施工活动和自然条件等因素主要影响垂直和水平扩散常数的大小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号