首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锑矿开采和含锑化合物的应用在一定程度上会造成环境锑污染的加重,对人体健康和生态系统带来风险,为缓解这一现象,采用液相还原负载的方式制备沸石负载纳米零价铁(Z-ZVI)复合材料,探究其对Sb(Ⅲ)和Sb(Ⅴ)的去除效果;采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对反应前后复合材料进行表征,并探究不同材料配比、溶液初始pH及无机阴离子对Sb(Ⅲ)和Sb(Ⅴ)吸附效率的影响.结果表明:(1)沸石负载后的纳米零价铁(Z-ZVI)具有较高的比表面积(54.54 m2/g)和反应活性,能够有效吸附、还原高价锑.(2)在pH=7、1.0 g/L Z-ZVI的条件下,反应4 h对20 mg/L Sb(Ⅲ)和Sb(Ⅴ)的吸附率分别达到88%和62%,吸附过程符合准二级动力学方程和Freundlich等温吸附模型.(3)Sb(Ⅲ)的去除率受pH变化的影响不大,但Sb(Ⅴ)的去除率随初始pH的升高而下降,溶液反应终点pH相比初始pH均有所上升.(4)XRD和XPS表征发现,Sb的去除过程中同时存在吸附和还原作用,Fe0氧化过程中...  相似文献   

2.
为去除锑矿山废水中Sb(Ⅲ)污染,采用静态吸附试验,调查了湖泊水华主要藻种——微囊藻(Microcystis)对Sb(Ⅲ)的生物吸附特征及机理,并推断其反应方程式.结果表明:微囊藻吸附剂对Sb(Ⅲ)的吸附作用受生物量、pH、离子强度和吸附时间影响.最佳微囊藻吸附剂投加量为0.50 g,pH为4.0,吸附时间为60 min,室温条件,此时Sb(Ⅲ)的吸附量最大,为5.67 mg/g;微囊藻吸附剂对Sb(Ⅲ)的吸附速率非常快,遵循假二级动力学模型;pH对Sb(Ⅲ)吸附的影响与Sb形态以及吸附剂表面官能团质子化作用密切相关.阳离子(Na+和Ca2+)对Sb(Ⅲ)生物吸附效率的抑制作用随离子强度增加而加强,阴离子(NO3-、Cl-和SO42-)未对其吸附产生影响.研究显示,微囊藻吸附剂对Sb(Ⅲ)的生物吸附以化学吸附为主.羧基和羟基为主要吸附位点,通过表面络合作用与Sb(OH)3相结合形成内源络合物.   相似文献   

3.
针对含重金属Sb(III)废水处理问题,采用液相还原法制备出高效的还原氧化石墨烯负载纳米零价铁(nZVI/rGO)复合吸附材料,并采用多种技术手段对所制备的nZVI/rGO复合材料进行表征.同时,复合材料中nZVI的负载量、吸附剂投加量、初始pH值以及反应温度等因素对废水中Sb(Ⅲ)吸附去除效果的影响被全面考察,并进一步对吸附过程进行吸附等温线和吸附动力学拟合.结果表明,在25℃,pH为3.0时,当nZVI负载量为70wt%,nZVI/rGO投加量为0.5g/L时,Sb(Ⅲ)的去除率最高,140min内可达99.7%.该吸附过程符合准二级动力学模型与Langmuir等温吸附模型,因此nZVI/rGO被证实是一种高效的Sb(III)吸附材料.  相似文献   

4.
厌氧环境中硫化亚铁(FeS)在重金属元素的地球化学循环中扮演极其重要的角色。然而,厌氧条件下FeS与锑(Sb)之间的相互作用尚未有较为清晰的认识。为了探究厌氧条件下FeS对三价锑(Sb(Ⅲ))的吸附动力学、吸附等温线以及吸附的影响因素,本研究以沉淀法制备的FeS为研究对象,测试了其溶解性以及表面形貌。并通过条件实验,考察不同pH、初始FeS、反应时间等因素对FeS吸附Sb(Ⅲ)的影响。结果表明:吸附过程符合准二级动力学模型的描述;中性条件下Langmuir吸附模型对吸附过程具有较高的拟合度,饱和吸附量为380. 3 mg/g; Sb(Ⅲ)在酸性条件下的吸附可能与硫化矿物Sb2S3的析出密切相关,这可能是与FeS溶解产生H_2S反应的结果;而在中性及碱性条件下,FeS与Sb(Ⅲ)的反应主要与表面吸附反应有关。  相似文献   

5.
As(Ⅲ)是一种高毒性的化学物质,对人体具有致癌作用。研究调查了实验室合成的纳米铁和其它几种价格低廉的吸附剂对水中As(Ⅲ)的去除效率。通过批实验对八种不同吸附材料进行了比较:自制纳米铁(ZZ-NZVI),尊业纳米铁(ZY-NZVI),活性炭(AC),铸铁屑(CSI),膨润土(B),石墨化碳黑(GCB),纳米碳(NC)和红砖(RB)。这些吸附材料对As(Ⅲ)吸附动力学速率常数顺序依次为LS-NZVIZY-NZVICSI。反应1h时,0.25g纳米铁对起始质量浓度为910g/LAs(Ⅲ)的去除率高达99%以上,被处理后的水中As(Ⅲ)浓度低于10g/L.结果表明,具有高反应活性的纳米铁将成为饮用水中砷去除非常有效的吸附材料。  相似文献   

6.
铜离子和孔雀绿在磷酸酯化改性豆壳上的吸附行为   总被引:4,自引:1,他引:3  
报道了一种功能基为磷酸羟基的酯化豆壳阳离子吸附剂的固相制备技术,研究了铜离子和孔雀绿在改性豆壳上的吸附行为.采用静态批次试验研究了不同实验参数(pH值、吸附剂用量、吸附质浓度和吸附时间)对铜和染料吸附的影响.铜离子和孔雀绿分别在pH≥3.0和6.0时达到最大吸附值.对于浓度为100 mg·L-1的铜溶液,5.0 g·L-1及以上的改性豆壳能去除91%以上的铜;改性豆壳用量≥2.0 g·L-1时,能去除浓度为250 mg·L-1的溶液中95%以上的孔雀绿.改性豆壳对铜离子和孔雀绿的吸附符合Langmuir吸附等温线模型,最大吸附能力分别为31.55 mg·g-1和178.57 mg·g-1.对铜离子和孔雀绿的吸附分别在75 min和7 h达到吸附平衡,准一级反应动力学方程和准二级反应动力学方程能分别描述铜离子和孔雀绿在改性豆壳上的吸附过程.  相似文献   

7.
海藻酸钠凝胶球去除单宁酸和没食子酸的研究   总被引:2,自引:0,他引:2  
采用海藻酸钠-钙凝胶球、海藻酸钠-钙-铁(Ⅲ)凝胶球、海藻酸钠-铁(Ⅲ)凝胶球对水体中单宁酸和没食子酸进行吸附实验研究。结果表明,对50mL(50mg/L)的模拟污水进行吸附,海藻酸钠-铁凝胶球和海藻酸钠-钙-铁(Ⅲ)凝胶球的吸附效果优于海藻酸钠-钙凝胶球,吸附120min后,使用Fe(Ⅲ)凝胶球对单宁酸的去除率可达97%,对没食子酸的去除率可达99%,对两种物质的吸附量分别为8.0、8.3mg/g,使用海藻酸钠-钙-铁(Ⅲ)凝胶球对单宁酸、没食子酸的去除率可达84%和97%,对两种物质的吸附量分别为7.0、8.0 mg/g。饱和吸附后海藻酸钠-钙-铁(Ⅲ)凝胶球可以再生利用,对单宁酸的去除效果随着降解再生次数的增加而降低。  相似文献   

8.
蒋婷  鲍玥  李威  方荣业  史惠祥 《环境科学》2017,38(11):4632-4640
利用液相化学沉淀法制备纳米零价铁/活性炭(nZVI/AC)复合材料,通过XRD、XPS、SEM、BET等表征手段对复合材料的结构、形貌、理化特征等进行分析,进一步考察了反应体系、nZVI负载量、初始pH、投加量等对除锑效果的影响,并对其去除机制进行了探讨.结果表明,液相化学沉淀法可成功制备nZVI/AC复合材料;在N_2氛围下,15%nZVI/AC投加量为0.2 g·L~(-1),初始pH为7.5(原水pH),反应2 h后,Sb(Ⅴ)的去除率达到76.2%,出水浓度仅为23.8μg·L~(-1);去除机制研究结果表明,Fe~(2+)在该体系去除Sb(Ⅴ)中起着主要的作用,是反应过程中的主要活性物质,结合反应前后nZVI/AC表面Sb元素分析,去除过程主要依靠Fe(0)和Fe~(2+)的还原作用,将Sb(Ⅴ)还原成Sb(Ⅲ),并通过吸附作用去除.  相似文献   

9.
基于自组装原理混合了氧化石墨烯、壳聚糖和FeCl_3·6H_2O,并使用NaOH溶液固定,戊二醛-甲醇溶液交联后得到了不同载铁量的载铁氧化石墨烯壳聚糖(Fe@GOCS)球形材料,采用静态吸附实验研究其对水溶液中As(Ⅲ)的吸附去除及机制.结果表明,吸附剂负载的铁以α-FeO(OH)形态为主,对As(Ⅲ)的吸附容量随pH的降低呈上升趋势,实验最佳pH值为3.在温度298.15、 308.15和318.15 K且pH值为3条件下,As(Ⅲ)的吸附反应在45 h左右达到平衡,吸附剂最佳投加量为1.0 g·L~(-1),最大吸附容量可达289.4mg·g~(-1). 5次吸附-解吸附后,吸附容量未下降,反而呈上升趋势.热力学结果显示:ΔG~θ0、ΔS~θ0和ΔH~θ0,表明Fe@GOCS对As(Ⅲ)的吸附过程是吸热和熵增的自发反应,升温利于吸附;吸附过程符合伪二级动力学方程,Freundlich和Sips等温吸附模型能更好地描述对As(Ⅲ)的吸附行为.结合材料表征测试结果,认为离子交换和表面络合是Fe@GOCS去除As(Ⅲ)的主要机制.  相似文献   

10.
本文对比研究了沸石、酸碱改性沸石、硅藻土、酸改性硅藻土、锰改性硅藻土、水葫芦干粉末、酸碱改性水葫芦干粉末、煤灰、煤渣、稻草秸秆粉末(40目)、稻草秸秆颗粒(粒径0.5cm)、玉米秸秆粉末(40目)、玉米秸秆颗粒(粒径0.5cm)、陶粒、铁氧化物改性陶粒等15种吸附材料吸附去除水体中Sb(Ⅴ)的效果。结果表明,在固液比为1 g∶50 m L,初始溶液p H=7.5±0.5,反应温度为25±2℃,震荡速率150 r/min,初始Sb(Ⅴ)浓度为1000μg/L,吸附反应时间为5h条件下,15种吸附材料对Sb(Ⅴ)具有显著不同的吸附效果,吸附量大小依次为煤渣铁氧化物改性陶粒锰改性硅藻土酸碱改性水葫芦干粉末煤灰玉米秸秆粉末酸碱改性沸石酸改性硅藻土玉米秸秆颗粒稻草秸秆粉末沸石稻草秸秆颗粒陶粒水葫芦硅藻土。通过对原始吸附材料进行不同改性处理,发现改性后材料相对于原始材料对Sb(Ⅴ)的吸附能力有明显提升,其中锰改性硅藻土、酸碱改性水葫芦和铁氧化物改性陶粒对Sb(Ⅴ)的吸附量分别为48.7、46.6和48.9μg/g。其中,铁氧化物改性陶粒作为一种新型的大颗粒吸附剂,不仅对Sb(Ⅴ)的吸附性能好,而且相对于传统的粉末型吸附剂更易于从被处理水体中取出,避免了吸附剂和目标毒害元素驻留在水体中产生二次释放的环境风险,具有较好的应用潜力。  相似文献   

11.
零价铁(ZVI)去除Cu2+的特性及机制研究   总被引:3,自引:2,他引:1  
陈玉伟  王建龙 《环境科学》2009,30(11):3353-3357
研究了零价铁去除水溶液中铜离子的影响因素及动力学特性,并利用X射线衍射(XRD)分析对反应机制进行了探讨.结果表明,当溶液中Cu2+的浓度为300 mg/L,零价铁的用量为1 g/L时,Cu2+的去除率99%.Cu2+的去除速度很快,且反应前30min零价铁去除Cu2+的过程可以用一级反应动力学方程模拟.零价铁去除Cu2+的机制主要基于氧化还原反应,Cu2+的还原产物主要为Cu和Cu2O.  相似文献   

12.
以石灰为沉淀剂,利用空气氧化沉淀法制备得到的四氧化三铁作为吸附剂处理水溶液中As(Ⅲ),研究了溶液p H、吸附剂用量、反应时间、初始As(Ⅲ)质量浓度、反应温度等因素对As(Ⅲ)吸附性能的影响。结果表明,四氧化三铁粒径0.2μm,总铁含量为56%。当As(Ⅲ)初始浓度为10 mg/L,溶液p H为7,吸附剂用量为1 g,反应时间为480 min,反应温度为30℃时,砷去除率达98.27%。四氧化三铁对As(Ⅲ)的吸附等温线符合Freundlich方程,吸附动力学符合准二级动力学方程。  相似文献   

13.
含铀废水的处理是目前研究的热点。通过静态吸附试验,分别研究了零价铁(ZVI)和热改性膨润土(TAB)对含铀废水中U(Ⅵ)的去除效果,考察了溶液pH值、处置时间、使用量等因素对U(Ⅵ)去除率的影响。结果表明:零价铁对U(Ⅵ)的去除率高,处置时间短,当废水中铀U(Ⅵ)的浓度为30 mg/L时,ZVI的最佳使用量为3.0 g。当pH为5,处置时间10 min时,U(Ⅵ)去除率达到89.5%;延长处置时间,去除率略有增加。热改性膨润土在废水中铀的浓度为30 mg/L时的最佳使用量为0.4 g,过量使用膨润土反而不利于U(Ⅵ)的去除。当pH为4,处置时间120 min时,U(Ⅵ)去除率达到86.5%。动力学分析表明,ZVI处理含铀废水的过程符合一级反应动力学方程,而TAB处理含铀废水的过程接近二级反应动力学方程。  相似文献   

14.
采用Hummer方法制备了氧化石墨烯(GO),采用化学共沉淀法把铁氧化物纳米粒子覆盖在GO上制成磁性氧化石墨烯(MGO),并把MGO用作吸附剂去除水中阴离子染料刚果红.采用扫描电镜(SEM)、透射电镜(TEM)、Zeta电位仪和磁强计对MGO进行了表征.研究了吸附动力学,吸附等温线及初始pH值,离子强度对吸附的影响.考察了MGO对自来水中刚果红的去除效果.结果表明,GO具有片状的二维纳米结构,表面有许多的褶皱;当pH3.5,吸附剂表面带负电荷,等电点为3.5;MGO的饱和磁化强度为31.2emu/g,足够从水溶液中分离出来.刚果红的吸附符合准二级动力学模型,且在吸附时间为7h内基本达到吸附平衡.在超纯水中最大吸附容量高达140.6mg/g,且吸附量随pH值升高先增加再降低,当pH4~5达到最大值.MGO对自来水中刚果红的最大吸附容量为287.6 mg/g,为在超纯水中的2倍,表明MGO对刚果红具有很好的去除效果.  相似文献   

15.
采用铁、锰对水稻秸秆生物质碳(BC)进行改性,将制备所得的锰改性生物碳(Mn-BC)和铁锰改性生物碳(Fe-Mn-BC)作为吸附剂,用于对水中Sb (Ⅲ)的吸附实验.通过全自动比表面积及孔隙度分析仪(BET)、扫描电子显微镜(SEM)对吸附剂的表面性质进行研究,在吸附最佳pH值和投加量条件下开展等温吸附、动力学吸附及体系共存阴离子影响实验,探究改性生物炭的再生吸附能力,最后利用傅里叶红外光谱仪(FT-IR)、X射线光电子能谱仪(XPS)探究Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附机理.结果表明:改性生物炭具有更大的比表面积及总孔容积.BC在pH值为2,Mn-BC和Fe-Mn-BC在pH值为4,投加量为2.5g/L,25℃条件下,BC、Mn-BC和Fe-Mn-BC的最大吸附量分别为5.08,11.45,29.45mg/g.BC对Sb (Ⅲ)的吸附主要为物理吸附,Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附为化学兼具物理吸附.Mn-BC吸附Sb (Ⅲ)受F-、HCO3-和H2PO4-的影响较大,Fe-Mn-BC对Sb (Ⅲ)的吸附基本不受离子类型和离子强度的干扰.Fe-Mn-BC较Mn-BC具有更突出的吸附再生能力和重复利用性.Mn-BC和Fe-Mn-BC对Sb (Ⅲ)的吸附过程,先是氧化反应将大部分的Sb (Ⅲ)氧化为Sb (Ⅴ),再通过酸性条件下明显的静电作用,Sb (Ⅴ)与负载于Mn-BC上的Mn和Fe-Mn-BC上的Fe/Mn分别形成较为稳定的内层络合物Mn-O-Sb和Fe-O-Sb-Mn.此外,改性生物炭的官能基团-OH、C=O、N-H在吸附作用中也发挥着重要作用.  相似文献   

16.
该研究利用简单的化学合成法合成新型Fe_3O_4@SiO_2/PEI修饰的氧化石墨烯磁性复合材料,并用于去除水中的Cu(Ⅱ)离子,通过Box-Behnken响应面法对pH、Cu(Ⅱ)离子的初始浓度和反应温度3个变量进行优化,得到MSPG对Cu(Ⅱ)离子吸附的最优吸附条件为初始p H为5、初始浓度80 mg/L、反应温度为40℃时,最大理论吸附量为61.48 mg/g。而在最佳条件下进行验证实验,实验值为61.55 mg/g,与理论值相近。吸附动力学研究和等温线研究表明吸附过程在6 h达到平衡,分别符合准二阶动力学模型与Freundlich等温模型,粒子内扩散并不是整个过程中唯一的速率控制步骤。热力学研究证明MSPG对Cu(Ⅱ)的吸附过程是吸热的自发过程。  相似文献   

17.
水环境中过量Sb(Ⅴ)所引起的环境危害受到越来越多的关注.为了考察工艺参数对铁盐改性生物吸附剂吸附Sb(Ⅴ)效果影响、交互作用及其机理,以Fe(Ⅲ)改性卡氏变形杆菌吸附剂(简称“FMPAs”)为研究对象,采用Box-Behnken响应曲面法对FMPAs吸附处理合成含Sb(Ⅴ)废水的吸附时间、FMPAs投加量、pH、温度及Sb(Ⅴ)初始浓度等因素进行优化,确定了最优吸附条件,并对吸附过程的等温模型、动力学模型及吸附机理进行了研究.结果表明:①FMPAs吸附Sb(Ⅴ)的最优条件为吸附时间3.0 h、FMPAs投加量1 910.04 mg/L、pH 2.31、温度45.0℃、Sb(Ⅴ)初始浓度24.80 mg/L,且最优条件下Sb(Ⅴ)的去除率高达97.03%.②FMPAs对Sb(Ⅴ)的吸附符合Langmuir等温吸附模型,其最大吸附容量(qmax)为60.506 mg/g,其吸附动力学过程可采用准一级动力学模型拟合,属于单层吸附和化学吸附.③FMPAs吸附Sb的机理主要为Fe(Ⅲ)改性卡氏变形杆菌生成了Fe—O—OH、Polyose—Fe、Polyose—O—Fe(OH)2等化合物,这些物质中羟基被Sb(Ⅴ)取代生成新的配合物Fe—O—Sb,使Sb(Ⅴ)得到吸附去除.研究显示,FMPAs对Sb(Ⅴ)具有较高的吸附容量,是一种极具潜在应用价值的绿色生物质吸附剂,可用于处理含Sb(Ⅴ)废水.   相似文献   

18.
活性炭对含铜制药废水的吸附特性   总被引:4,自引:2,他引:2  
以粉末活性炭为吸附剂,采用批式试验,研究静态吸附对黄连素脱铜废水中Cu2+的去除效果,分析了吸附剂投加量(5~50 g/L),pH(1.0~5.0)和接触时间(20~600 min)对吸附效果的影响. 当pH为2.4,吸附剂投加量为30 g/L时,反应300 min即可达到吸附平衡状态. 通过对吸附动力学和吸附等温线的模型分析发现,二级吸附动力学模型能够更好地描述试验结果,对吸附平衡数据的拟合采用Langmuir吸附等温线优于采用Freundlich吸附等温线.   相似文献   

19.
以富营养化湖泊水华暴发的主要藻种-微囊藻干物质作为生物吸附剂,考察不同生物量、初始pH值、吸附时间等因素对废水中锑(V)生物去除作用的影响,探讨微囊藻对Sb(V)的生物吸附性能;通过zeta电位和红外光谱技术揭示其吸附机理,并推断其反应方程式.结果表明:在室温条件下,吸附剂用量为0.5g:20mL,pH值为2.0,时间为1h时,Sb(V)的生物吸附达到最大容量为5.84mg/g(以干重计),吸附等温线符合Langmuir等温方程(R2=0.993),生物吸附动力学过程遵循假二级动力学模型(R2=0.994).在pH值2.0~9.0范围内,其生物吸附效率随pH值增加逐渐下降.Zeta电位和ATR-IR光谱结果表明微囊藻细胞壁表面的氨基、羧基和羟基为Sb(V)的主要吸附位点,其中质子化的氨基通过静电吸引作用结合Sb(V),羧基和羟基则通过表面络合作用与Sb(V)结合形成内源络合物.  相似文献   

20.
小麦秸秆对Cr(Ⅵ)的吸附特性及动力学、热力学分析   总被引:8,自引:3,他引:5  
为实现农业废料资源化,解决含铬废水的污染问题,研究了小麦秸秆对Cr(Ⅵ)的吸附性能.试验考察了pH,小麦秸秆投加量,温度和初始ρ〔Cr(Ⅵ)〕对吸附活性的影响,进而确定了小麦秸秆去除Cr(Ⅵ)的最优条件.结果表明:当pH=1.0,温度为50 ℃,固液比为40 g/L时,小麦秸秆对Cr(Ⅵ)的吸附效果最佳.在pH=1.0,温度为30 ℃,固液比为4 g/L的条件下,初始ρ〔Cr(Ⅵ)〕分别为50,100和150 mg/L时,吸附6 h达到平衡,饱和吸附量分别为6.281,11.942 和13.981 mg/g.吸附动力学反应符合准二级动力学方程.吸附热力学反应符合Langmuir吸附等温方程.结合FTIR谱图和SEM结果,推断小麦秸秆对Cr(Ⅵ)的吸附过程以化学吸附为主.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号