首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
生物质炭的性质及其对土壤环境功能影响的研究进展   总被引:37,自引:0,他引:37  
袁金华  徐仁扣 《生态环境》2011,20(4):779-785
在厌氧或者绝氧的条件下对生物质进行热解,可产生含碳丰富的固体物质,称为生物质炭。由于生物质炭在农业和环境中的巨大应用前景和对土壤碳的增汇减排作用,近期成为土壤学和环境科学的研究热点。综述了生物质炭的一些基本性质及其对土壤环境功能的影响,分析了该领域未来的发展趋势。国内外的研究表明:生物质炭含有大量植物所需的营养元素,可以促进土壤养分的循环和植物的生长;生物质炭一般呈碱性,施用生物质炭可以降低土壤的酸度和有毒元素如铝和重金属对植物的毒性;生物质炭表面含有丰富的-COOH、-COH和-OH等含氧官能团,它们产生的表面负电荷使生物质炭具有较高的阳离子交换量(CEC),施用后可以提高土壤的CEC;生物质炭对农药等有机污染物和重金属等有很强的吸附能力,可用于污染土壤的修复;生物质炭具有高度的孔隙结构,可以增加土壤的空隙度和保水能力,降低土壤容重,有利植物根系生长;生物质炭是一种含碳的聚合物,主要由单环和多环的芳香族化合物组成,这种结构特点决定了生物质炭具有较高的化学和生物学稳定性,较强的抵抗微生物分解的能力,增强了土壤的固碳作用,减少碳向大气的再释放。该文可为从事农业废弃物的资源化利用、固碳减排、污染土壤修复和土壤改良与管理等领域的科研人员提供参考。  相似文献   

2.
稻田是CH_4的重要排放源,降低水稻土CH_4排放对减缓全球气候变化具有重要意义。生物质炭因其具有较强的稳定性、吸附性和碱性等特性,在稻田CH_4减排研究中受到广泛关注。综述了不同生物质和不同热解温度制成及不同孔隙结构的生物质炭对稻田土壤CH_4排放的影响及其机制等方面的国内外研究进展。结果发现,不同生物质炭的性质有很大差异。不同生物质炭的添加,通过对稻田土壤的通气性、可溶性有机碳含量、p H及水稻植株的不同作用来影响产甲烷菌和甲烷氧化菌的活性和丰度,进而影响CH_4排放。此外,生物质炭对CH_4排放的影响还与土壤类型有关。结合目前国内外生物质炭对CH_4排放影响的研究现状,提出了未来生物质炭在稻田CH_4排放领域的研究方向,旨在为生物质炭在稻田CH_4减排中的应用提供思路和参考。  相似文献   

3.
刘洁  杨妍  韩兰芳  孙可 《环境化学》2021,40(1):174-184
生物质炭在碳封存和土壤改良等方面的应用潜力取决于其在土壤中的微生物矿化稳定性.明确生物质炭在土壤中微生物矿化稳定性是推进生物质炭在土壤固碳、改良等领域应用的关键.基于生物质炭在土壤中的微生物矿化稳定性研究进展,本文系统总结了不同类型生物质炭的微生物矿化速率和在土壤中的平均驻留时间,探讨了不同因素(生物质炭特性、土壤特性和外源不稳定有机质的添加等)对生物质炭微生物矿化稳定性的影响,阐述了生物分解过程中生物质炭的性质变化及其与土壤微生物/有机质/矿物质的交互作用,简述了生物质炭中内源矿物质和外源土壤矿物质对其矿化稳定性的影响机理.最后,总结现有研究的不足,并提出今后的研究重点.  相似文献   

4.
施用生物炭对土壤微生物的影响   总被引:5,自引:0,他引:5  
作为生物质材料的热解产物,生物炭被认为是很有前景的环境污染治理与生态修复材料.多方面的研究说明,生物炭的多孔、大比表面积、丰富的官能团等性能,使其具有"锁定"碳,固定土壤污染物,改善土质等功能,从而从土壤物理化学的角度证实了生物炭在土壤污染治理与改良方面的作用,但至于生物炭对土壤微生物的影响及其长期效应尚处于起步阶段.本文总结分析了近年来国内外生物炭与土壤微生物相关的研究成果,得出生物炭能通过改变土壤资源储备(如可利用C、营养物质、水分等)、非生命成分(如p H、CEC等)等理化性质,加快土壤细菌和真菌的生长与繁殖,影响土壤微生物群落结构和功能.可见,生物炭土地利用的优点不容置疑,为了实现其规模化应用,生物炭的施用剂量、生物炭-微生物-污染物的作用机理等问题亟待深入地研究,生物炭对土壤微生物及养分循环的长期影响还有待于系统地展开.  相似文献   

5.
生物炭的环境效应及其应用的研究进展   总被引:61,自引:1,他引:60  
李力  刘娅  陆宇超  梁中耀  张鹏  孙红文 《环境化学》2011,30(8):1411-1421
作为新型环境功能材料,生物炭以其优良的环境效应和生态效应成为环境科学等学科研究的前沿热点.本文介绍了生物炭结构和基本特性,对其在土壤肥力改良、碳的增汇减排以及受污染环境修复的应用和机理方面的研究进展进行了综述,并扼要分析了生物炭研究的前景和方向,为生物炭技术的应用和推广提供一定的思路.  相似文献   

6.
生物质炭输入对土壤碳排放的激发效应研究进展   总被引:1,自引:0,他引:1  
生物质炭因其特殊结构分解缓慢而长期固存在土壤中,在稳定有机碳库、增加碳库容量、保持土壤肥力、改变土壤质地方面具有重要作用。同时,随着生物质炭输入土壤团聚体结构、水分渗透性、养分吸附和微生物活性也发生改变,引起原位土壤有机碳周转改变的激发效应。文章综述了生物质炭输入对土壤环境、碳排放、生物质炭自身碳矿化的影响,对生物质炭-土壤互作产生的激发效应持久性、大小、方向和机制进行总结,即生物质炭输入后的正激发效应可能表现为生物质炭中可溶组分与微生物共代谢而促进生物质炭自身碳矿化;生物质炭添加引起的负激发效应可能表现为生物质炭诱发原位土壤有机碳更加稳定或生物质炭中易挥发有机物抑制原位土壤微生物活性而降低土壤碳排放。并根据目前的研究现状,就生物质炭输入量、与土壤微生物群落和植物的相互作用、生物质炭添加的风险预测和评估及开展长期研究的必要性等问题进行展望,以期为生态系统长期碳吸存研究奠定基础,为应对气候变化提供选择和参考。  相似文献   

7.
气候变暖已成为当今全球关注的焦点。农田生态系统作为CO2、CH4、N2O等温室气体的主要排放源,在全球温室效应中起重要作用。近年来,由于生物质炭在改善土壤性质,提高土壤碳汇和控制农业温室气体排放方面的巨大应用潜力,特别是对土壤碳的增汇减排作用,已成为土壤学和环境科学的研究热点。目前,关于生物质炭在农田温室气体排放方面的影响研究主要集中在我国华中、太湖平原、成都平原等地。然而由于受空间地域、实验条件等因素的差异,众多学者开展生物质炭作用于农田温室气体排放的研究结果不尽相同,也未曾见有报道从影响因素的角度深入探讨其作用机制。综述对比了近几年来国内外关于生物质炭对农田温室气体排放的影响研究,并从生物质炭的种类、施炭量、应用的土壤类型以及耕作方式和施肥条件等因素探讨了生物质炭对农田温室气体排放的作用机制。旨在通过改变生物质炭的种类和施炭量等条件,从而为抑制农业温室气体的排放乃至缓解全球气候变化提供可靠的科学依据。综合各项研究发现,秸秆炭在抑制农田温室气体排放方面要优于其他种生物质炭;40 t·hm-2的施炭量是一个既能提高作物产量又能实现固碳减排目标的较好选择;单作物耕作方式和合理的保护性耕作技术有利于减少农田温室气体的排放;在肥料的施用选择上,施用氮磷钾有机肥比普通氮肥更能有效地减少农田温室气体的综合排放效应。然而,从微生物活性和群落结构变化的角度深入探讨生物质炭作用于农田温室气体排放的微观机理及其温室气体减排还仍需进一步的研究。  相似文献   

8.
生物炭对土壤微生物的影响研究进展   总被引:1,自引:0,他引:1  
生物炭是有机材料在厌氧条件下热解而成的产物。近年来,生物炭因在碳固定、土壤改良和作物产量提高等方面具有较大的应用潜力而引起国内外学者的广泛关注。作为一类新型的土壤改良剂,它能提高土壤有机碳含量及阳离子交换量(CEC),改善土壤保肥持水性能,有益于土壤微生物活动,同时还可吸附抑制对土壤微生物生长有毒的化感物质,为土壤微生物提供有利的栖息场所。但生物炭的效应与生物炭的特性、用量、土壤类型及肥力有关。笔者从生物炭对土壤微生物的影响及其作用机制出发,概述了不同生物质材料及热解温度对生物炭理化性质的影响及生物炭对土壤微生物丰度、群落结构和活性影响的研究进展。未来应重点从生物炭的特性、生物炭与微生物交互作用及生物炭的环境修复等方面深入研究,客观评价生物炭对土壤微生物的作用。  相似文献   

9.
基于文献计量的秸秆综合利用研究热点与前沿分析   总被引:1,自引:0,他引:1  
了解秸秆综合利用领域研究应用的热点和前沿,有助于制定并优化秸秆资源化的政策。文章以CSCD和SCI-E数据库为获取秸秆综合利用研究领域中英文文献的数据来源,比较分析1999—2003、2004—2008、2009—2013和2014—2019年4个时间段肥料化、燃料化、饲料化、原料化和基料化等5个应用方向的中英文文献的分布比例及发表论文的高频关键词,确定秸秆综合利用的研究热点与前沿。结果表明,近20年,国内外学者和机构为推动秸秆综合利用研究,做出了巨大贡献,发文量呈现不断增长的趋势。肥料化始终是秸秆综合利用领域中文文献最主要的研究方向,英文文献中肥料化和饲料化应用方向的发文量占比不断下降,而燃料化的发文量占比不断上升;原料化和基料化应用研究在中英文文献中始终关注度较低。2009年前,中文文献比较关注秸秆还田对土壤改良和培肥的影响,而英文文献的关注点聚焦于饲料化的可消化性和对牲畜生长性能等影响,以及对作物产量、土壤有机碳等影响的肥料化应用上;2009年后,中文文献更多研究保护性耕作和作物产量变化以及土壤微生物群落结构等,而英文文献转向制备生物乙醇、沼气、秸秆生物质热解等燃料化应用和土壤微生物、土壤养分管理等肥料化应用上。近年来,中文文献研究前沿主要集中于秸秆还田对土壤和作物的影响、秸秆热解和发酵以及秸秆复合材料应用等;而英文文献研究秸秆综合利用对环境(如土壤碳环境和温室气体排放等)的影响、秸秆生物质热解燃烧、秸秆发酵制备生物乙醇和沼气、还田对土壤微生物及氮磷养分等影响,点多面广。高频关键词聚类分析,对大数据进行可视化展示,可反映近20年秸秆综合利用的研发历程,为下一步更好发挥秸秆的耕地保育、种养循环、节能减排等功能提供借鉴意义。  相似文献   

10.
生物炭对土壤生境及植物生长影响的研究进展   总被引:27,自引:0,他引:27  
生物炭是指由含碳量丰富的生物质在无氧或限氧的条件下低温热解而得到的一种细粒度、多孔性的碳质材料。近年来,生物炭作为一类新型环境功能材料引起广泛关注,其在土壤改良、温室气体减排以及受污染环境修复等方面都展现出应用潜力,已成为当前的研究热点。综述了生物炭对土壤生境以及植物生长方面的影响机制,并指出未来研究的主要方向。国内外最新的研究表明:生物炭的高孔隙度和表面面积,可以增加砂性土壤的田间持水量,但这种增加效应是有限度的;生物炭的碱性属性使其能够提高酸性土壤的pH值,这对喜碱作物的生长具有积极意义;生物炭能够抑制土壤氮磷养分淋失,提高肥料利用率;生物炭的添加会增加土壤微生物量,改变土壤微生物群落结构组成和土壤酶活性;生物炭的添加改善了土壤性质、养分状况以及土壤微生物性质,进而促进了植物生长。但生物炭对土壤生境和植物生长的影响效应要取决于土壤肥力和性质、植物种类、以及生物炭的特性和施用量等因素。因此,必须根据不同土壤的主要障碍因子,选择合适的生物炭,以期得到较好的土壤改良效果。今后应加强生物炭在林地土壤改良以及林木生长方面的研究与应用,进一步探索生物炭在土壤中发生的生物和化学反应机理,并且要对生物炭的施用效果进行野外长期定位研究。  相似文献   

11.
中国农业固体废弃物秸秆的资源化处置途径分析   总被引:2,自引:0,他引:2  
对中国近年来以秸秆为代表的农村种植固废的污染和危害做了简要说明,提出了两大类资源化处理处置技术:生物质资源化利用和生物炭资源化利用,并对各种资源化技术进行了初步的分析和比较。由于农业秸秆具有一定的元素和结构组成,是一种优良的生物质材料,可以通过秸秆肥料化、饲料化、生物质塑料技术、生物质能燃料转化和作为化工原料及建材来实现生物质的利用。同时由于秸秆可以转化为生物质炭,生物质炭具有固定大气碳素、改善土壤结构、修复受污染土壤、固持营养元素及提高作物产量的作用,因此生物质炭资源化利用也是很好的秸秆处置途径。文章对秸秆的资源化处理途径进行了总结和分析,指出了目前存在的不足和将来可能发展的方向。  相似文献   

12.
模拟生物质炭老化前后对菲吸持作用的影响   总被引:1,自引:0,他引:1  
通过实验室培养实验模拟生物质炭的老化过程,探索不同材料制备的生物质炭老化前后对多环芳烃(菲)吸持作用的影响,利用扫描电镜与傅里叶变化红外光谱等技术探究生物质炭老化前后的结构变化.结果表明,生物质炭老化过程中会形成老化层,550℃热解条件下,两种材料制备的生物质炭老化后含氧量增加、CEC增加,对菲的吸附能力均增强,主要与老化后表面羧基减弱和脂肪族官能团增加有关,而老化后稻壳炭的吸附能力更强与醚键的显著增加有关.  相似文献   

13.
时有发生的溢油事故以及沿海陆源输入性的石油污染会对海洋生态系统造成短期或长期的危害.生物炭是一种原料来源广、低成本、环境友好的富含碳的材料,是解决全球废弃物碳足迹问题的重要措施.近年来,基于生物炭的海洋石油烃修复材料被广泛关注.因此,本文将详细介绍生物炭的制备及生物炭材料在海洋石油烃修复中的应用.生物炭的制备过程中,其理化性质主要受原料类型、热解速率、热解温度和热解时间的影响.生物炭的高孔隙率和丰富的表面官能团,使其具有溢油吸附的巨大潜力.为提高溢油吸附效率,酸改性、磁改性和疏水改性等方法常用来改善生物炭的性质.此外,生物炭基气凝胶因其独特的吸附性能,也得到了广泛的研究和关注.除在水环境适用外,利用生物炭还可对沉积物中的石油烃进行封存和修复,以减少其扩散和生物利用度.多孔、富含营养元素的特点使生物炭可以作为固定化材料来固定石油烃降解菌,以减少海洋环境条件对微生物的冲击,保证菌剂的降解效率.综上,生物炭具备的各种优异性质使其在海洋石油污染修复中具有广阔的应用前景.因此,生物炭实际应用的不足及自身存在的某些性质问题,是此后生物炭的研究重点,应当给予更多的关注.  相似文献   

14.
生物质炭是一种由生物质在缺氧条件下加热制成的生物残渣,因其本身的多孔性被广泛用于土壤以及水体中的污染物的去除。文章着重研究了温度对于生物质炭吸附阿特拉津的影响,同时采用改进的Freundlich模型以及颗粒内部扩散模型对吸附过程进行了评估,并在此基础上建立了生物质炭对阿特拉津吸附数学动力学模型。使用的生物质炭以废弃松木为原材料(Pine Wood derived Biochar,PWB)在450℃、缺氧条件下热解两小时制成(研磨过30目筛)。试验通过扫描电子显微镜、傅里叶变换红外光谱等手段对生物炭的外部表面形态以及生物炭样品吸附阿特拉津前后表面官能团的变化进行表征。采用批量试验方法,定时取样,并通过高效液相色谱测定阿特拉津浓度变化来说明温度对生物炭吸附阿特拉津效果的影响,并拟合相对应的吸附动力学模型。SEM实验表明PWB表面为光滑的浅孔,气孔呈圆形并均匀分散于整个生物质炭表面。吸附反应后的傅里叶红外光谱表明,许多表面峰出现了一定强度的波动,说明反应过程中生物炭与阿特拉津的化学官能团高度结合,在PWB吸附阿特拉津后1 775 cm-1处的谱带强度变化最为突出。生物质炭对阿特拉津的吸附能力随反应温度的升高而升高,当温度为10、18和27℃时,其吸附容量分别为0.494 2、0.730 1、1.098 6 mg·g-1,结果表明该吸附过程是吸热反应。通过测定吸附过程中的活化能,确定化学吸附在生物质炭吸附阿特拉津过程中起主导作用。实验结果表明,PWB在不同的温度条件下对于环境中阿特拉津的去除有很好的应用前景,对阿特拉津污染水的治理除具有一定的参考价值。  相似文献   

15.
生物炭是由生物质在完全或部分缺氧的情况下经热解炭化产生的一类高度芳香化难熔性固态物质,具有改善土壤理化性质、调控营养元素循环、防治重金属、多环芳烃等污染物迁移转化等功能,因此,在土壤改良与修复领域具有较好的应用前景。但是,生物炭的施用将对土壤中的微生物群落结构组成带来影响,从而改变整个生态系统的物质循环过程。本文综述了近年来国内外有关生物炭对土壤微生物分布影响的研究进展,探讨了生物炭对土壤微生物生长代谢的作用机制,阐述了生物炭对于微生物主导的土壤生物地球化学过程产生的影响作用。相关研究发现,土壤总微生物生物量在生物炭施用后或增加,或不变,或呈现下降趋势;不同种类微生物对于生物炭的响应非常复杂,从而呈现出各异的土壤微生物群落结构组成。生物炭对微生物生长代谢的影响源于改变p H环境、影响水分分布、调节养分循环等多种机制的协同作用,而生物炭在对环境物质的吸附以及对微生物的直接吸附方面扮演着重要角色。同时,生物炭对于土壤微生物群落结构组成的影响还会随着时间的推移而发生变化。生物炭对土壤中微生物分布的改变还会进一步影响微生物的生物地球化学功能,对温室气体排放、碳氮循环和有机污染物降解等生物地球化学过程产生重要影响。因此,有待开展更多关于生物炭对于土壤微生物分布及其生态功能的影响的深入研究,以期更全面地评价生物炭对土壤环境质量的影响作用,为生物炭的实际应用提供依据。  相似文献   

16.
生物质炭施加对新成水稻土碳组分及其分解的影响   总被引:1,自引:0,他引:1  
将玉米芯热解炭化的生物质炭施加于长江沉积物新成土上发育的稻田土壤中,1 a后采集土壤并进行土壤碳分组及土壤培养;基于生物质炭与土壤的碳同位素丰度差异,量化生物质炭来源的有机质在土壤组分中的分布,分析施用生物质炭对土壤碳组分及其培养过程中分解动态的影响。结果表明,施用生物质炭可显著增加各级团聚体的有机碳含量,大部分(76%~90%)生物质炭以游离态形式存在于大团聚体(250μm)和微团聚体(50~250μm)外,少部分与微团聚体或20μm土壤矿质较紧密地结合。添加的生物质炭未促进土壤团聚体的形成。土壤中生物质炭自身的分解很弱,但不同程度地促进了原有土壤碳的分解。该试验初步证实,生物质炭单独施用未明显促进新成土上发育的稻田土壤有机碳的稳定,反之短期内可能加速土壤原有有机碳的分解。  相似文献   

17.
生物炭是一种富含碳的材料,可以由各种有机废物原料制备,例如木材废料、农业废物和城市污水污泥.生物炭因其碳含量高、阳离子交换容量高、比表面积大、结构稳定等特性而受到越来越多的关注.本文系统地分析和总结了生物炭的原料来源与性质及在污染土壤修复方面的应用.基于生物炭的理化性质差异,重点阐明了生物炭尺寸效应对土壤污染物的作用机理,并对其修复土壤污染物和改善土壤质量进行了深入讨论.此外,在将生物炭实际应用于环境修复时,应更加关注生物炭老化后性能的改变.综上所述,生物炭在环境修复中具有广阔的应用前景,尺寸效应差异调控土壤污染物的作用机理需要更深一步的研究.  相似文献   

18.
秸秆生物质炭土地利用的环境效益研究   总被引:12,自引:0,他引:12  
花莉  张成  马宏瑞  余旺 《生态环境》2010,19(10):2489-2492
农田土壤有机碳矿化释放CO2是农业温室气体排放的重要途径,促进土壤碳截获对于减缓全球温室效应具有重要意义。生物质炭具有改良土壤性质、促进土壤团聚体的形成、对土壤微生物生态具有调控作用等特性。因此,生物质炭对增强土壤碳截获能力及减少土壤CO2气体排放可能具有重要作用。采用实验室盆栽的方式,以黑麦草为目标植物,对农业秸秆生物质炭土地利用的环境效益进行了研究。实验结果表明:农业秸秆制生物质炭应用于农田土壤能产生多方面的环境效益。与对照相比,添加1%~4%生物质炭处理的土壤活性有机质质量分数均增加了25%以上,土壤呼吸度降低了23%~50%,同时,添加生物质炭对植物的生长也有促进作用。添加4%秸秆炭的处理的黑麦草生物量增加了68%。此外,秸秆生物质炭的添加对土壤中的养分具有较好的持留功能,与比照相比,添加生物质炭处理的土壤淋出液中氮和磷质量浓度显著降低,说明生物质炭能够有效减少水冲刷造成的氮磷流失,降低农业面源污染。  相似文献   

19.
在200和500℃制备滇池沉积物(泥炭土和草海底泥)生物炭,采用热重分析法和氧化剂氧化法,分别研究其热稳定性和化学稳定性,为判断沉积物生物炭的寿命、指导其应用提供数据和理论基础.研究显示,泥炭土和草海底泥中有机组分的损失主要发生在500℃烧制过程(分别为40%和30%);泥炭土和草海底泥热解后灰分含量分别从44.35%、58.25%升高到58.78%、70.05%(500℃),且脂肪性减弱而芳香性增强.随烧制温度提高,碳结构更加致密,沉积物生物炭热稳定性显著提高.不同温度生物炭的化学稳定性未表现出明显差异,是因为大量的灰分对有机组分提供了较强的保护作用,致使原料和低温生物炭也具有较强的化学稳定性.草海底泥及其生物炭因为灰分含量较高、芳香性较强,热稳定性高于泥炭土.本研究指出,沉积物生物炭稳定性规律不同于传统生物质生物炭,灰分可以明显提高生物炭抵抗环境老化的能力.  相似文献   

20.
老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响   总被引:1,自引:0,他引:1  
环境变化使生物炭材料发生老化作用,老化后的生物炭是否仍具有较强的吸附能力是评价生物炭对Cd修复的长期稳定性的重要指标.本文采用自然老化(Spontaneous aging,SPON),冻融循环老化(Freeze-thaw cycles aging,FTC)和高温老化(High temperature aging,HT)的方法对水稻秸秆生物炭进行2个月的人工加速老化,运用扫描电镜(SEM-EDS)、元素分析仪、傅里叶红外光谱分析仪(FTIR)研究老化作用对秸秆生物炭材料的影响,再通过等温吸附实验研究生物炭老化前后对Cd吸附性能特征的变化.结果表明,老化作用使生物炭材料局部发生破碎,增加了生物炭表面O/C比.老化作用显著影响秸秆生物炭表面的官能团,降低了生物炭表面—OH的数量,增加了CO、—COOH和Si—O—Si的数量,出现了C≡C键,可为Cd提供更多的吸附位点.等温吸附试验进一步证明了老化后的生物炭提高了对Cd(Ⅱ)的吸附性能.与生物炭原样相比,冻融循环老化、高温老化、自然老化使生物炭的Cd最大吸附量分别达到了26.49、33.30、23.40 mg·g~(-1),增加了27.8%,60.7%,12.9%.本研究表明老化作用改变了生物炭材料的表观结构和官能团,增强了对Cd(Ⅱ)的吸附能力,因此生物炭对Cd的修复具有一定的长期稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号