首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
优化了液相色谱法测定大气样品中多环芳烃(PAHs)的前处理净化手段,相较于弗洛里土柱,硅胶能有效去除仪器分析中目标物定性和定量分析的背景干扰.通过控制样品溶剂转换时浓缩体积,提高了低环数多环芳烃的回收率,各目标物的空白加标回收率在53%—128%之间(RSD20%).使用高效液相色谱(HPLC)二极管阵列/荧光检测器联用测定大气中的PAHs,当以100 L·min~(-1)采样24 h时,16种PAHs的方法检出限为0.08—0.29 ng·m~(-3),定量下限为0.32—1.16 ng·m~(-3).通过对实际样品的测定,验证了方法的可行性.  相似文献   

2.
对绿色食品产地的灌溉水中6种多环芳烃的高效液相色谱分析法进行了研究。对前处理使用的萃取溶剂做了对比,从加标回收率方面,得出了环己烷最好;其次是正己烷;再其次是二氯甲烷。检测采用甲醇和水(V∶V=90∶10)做流动相,恒度洗脱,只设置两段程序波长即可得到很好响应值。6种PAHs的浓度与其色谱峰面积的线性良好(r在0.9976~0.9999之间),方法精密度RSD的平均值为1.33%(n=5)。本方法参考国标、国际标准对流动相的组成、洗脱条件及荧光波长的设置都做了相应的改进,使得6种PAHs的分离比国标好,基线更平稳,方法更简便,操作也更容易,是测定绿色食品产地灌溉水中PAHs的较好方法。  相似文献   

3.
建立了自来水中6种氯代多环芳烃和15种多环芳烃的固相萃取-高效液相色谱荧光检测分析方法.500 mL水样过C18固相萃取柱富集,经6 mL的50%甲醇水溶液淋洗,10 mL二氯甲烷-正己烷(1∶1)洗脱.目标化合物经色谱柱(SUPELCOSILTMLC-PAH柱,150 mm×4.6 mm,5μm)分离后,荧光检测,外标法定量.结果表明,21种目标化合物在线性范围内线性关系良好,相关系数均大于0.999;目标化合物的加标回收率为70%—98%,相对标准偏差(RSD) 0. 6%—8. 8%;方法的检出限(LOD,S/N=3)为0. 3—5. 0 ng·L~(-1),定量限(LOQ,S/N=10)为1.1—16.7 ng·L~(-1).方法简便快速,可用于自来水中氯代多环芳烃和多环芳烃的检测.  相似文献   

4.
本研究建立了检测污泥中16种多环芳烃(PAHs)的气相色谱-质谱测定方法,对该介质中16种多环芳烃(PAHs)的提取、净化和色谱质谱条件进行了优化.采用100 m L正己烷∶丙酮(V∶V,50∶50)混合溶剂索式提取样品中的待测组分,经分子印迹固相萃取柱(MIPs/SPE)净化,内标法定量.结果表明,分子印迹固相萃取柱(MIPs/SPE)对PAHs单体专一吸附效果显著,对中环、高环PAHs的吸附明显,并且基质效应减弱.16种多环芳烃的线性范围为10—5000 ng·m L~(-1),相关系数(R2)不低于0.9978,加标水平为50、250、500 ng·m L~(-1)时,基质平均加标回收率分别为60%—105%,58%—121%和63%—115%,相对标准偏差(RSDs,n=6)为3.8%—9.4%.该方法快速、准确、灵敏度高、重现性好.  相似文献   

5.
建立基质固相分散(MSPD)辅助加压溶剂萃取(PLE)-高效液相色谱法测定土壤中16种多环芳烃的方法.土壤样品与弗罗里硅土混匀后装入萃取池,在15 MPa、120℃萃取条件下,丙酮∶二氯甲烷(1∶1,V∶V)作为萃取溶剂,静态提取5min,应用高效液相色谱法荧光检测-二极管阵列检测串联,采用外标法对其进行定量分析.结果表明:16种多环芳烃线性关系良好,相关系数均大于0.9994,利用荧光检测器与二极管阵列检测器的方法检出限分别为0.04—0.8μg·L-1、0.6—20μg·L-1,在低、中、高3个水平下的加标回收率在78.4%—105.8%范围内,测定结果的相对标准偏差为1.2%—4.1%(n=5).  相似文献   

6.
采用加速溶剂萃取作为土壤样品的萃取技术,萃取液浓缩后直接采用在线凝胶净化色谱-气质联用法分析检测土壤中16种多环芳烃.结果表明,16种多环芳烃在1.0—100.0μg·L~(-1)线性关系良好,线性相关系数均大于0.995.对10.0μg·L~(-1)标准溶液连续进样8针,相对标准偏差RSD在1.70%—6.27%之间,重复性良好.16种多环芳烃方法检出限范围为0.001—0.030μg·kg~(-1)(S/N=3).在加标浓度为0.1、0.5、1.0μg·kg-1时,16种多环芳烃的加标回收率均在62.5%—113.7%之间,符合日常分析检测的要求.  相似文献   

7.
近年来多环芳烃(PAHs)衍生物因其潜在的毒性和环境中的频繁检出受到越来越多的关注.许多PAHs衍生物具有比母体化合物更高的极性,易迁移至地下,对地下水安全构成潜在威胁.PAHs及其衍生物在地下水中共存,具有含量低、种类多、性质差异大的特点,实现同时分析测定较为困难.本文通过液液萃取和固相萃取两种前处理方式的对比和色谱条件的优化,确定了采用液液萃取-超高效液相色谱同时测定地下水中16种PAHs母体化合物、3种含氮衍生物、1种含氯衍生物的分析方法.超高效液相色谱选用ACQUITY UPLC BEH Shield RP18色谱柱,以乙腈和纯水作为流动相,在15.0 min内即可完成20种目标化合物的基线分离与分析,检测效率比高效液相色谱分析提高了近一倍.方法在5个浓度范围内均具有良好的线性关系(R20.9990).除苊烯外,其他PAHs化合物的方法检出限均在0.02—1.50 ng·L~(-1)之间.20种目标化合物的加标回收率在60%—103%之间.本方法成功地应用于实际地下水样品的分析,对批量地下水中PAHs及衍生物的同时筛查分析具有较强的实用意义.  相似文献   

8.
建立了食用油脂中16种多环芳烃(PAHs)的凝胶渗透色谱(GPC)净化-气相色谱/质谱(GC-MS)分析方法.样品以环己烷-乙酸乙酯(1∶1,V/V)提取后,经GPC净化,有效地除去了样品中的脂质类物质所带来的基质干扰,净化液进行GC-MS分析,内标法定量.加标水平为1、2、10μg·kg~(-1)时,PAHs的回收率为80.6%—106.7%,相对标准偏差为1.3%—13.4%.16种PAHs的检测限为0.11—1.1μg·kg~(-1),在1.0—50.0μg·L~(-1)范围内线性关系良好(r0.999).  相似文献   

9.
本文建立了三重四极杆气质联用仪(GC-MS/MS)测定土壤中16种多环芳烃(PAHs)含量的方法.土壤样品经二氯甲烷简单萃取后,利用Qu ECh ERS试剂进行净化,离心过滤膜后直接进GC-MS/MS测定.结果表明,在2—1000μg·L~(-1)浓度范围内,16种PAHs的相关系数均在0.996以上.在100μg·L~(-1)的加标浓度下,加标回收率在65%—119%之间,16种PAHs的最低检出限均低于0.80μg·kg~(-1).该方法快速、简单、准确,完全满足日常对土壤中PAHs的检测要求,可为土壤污染物排查提供快速检测依据.  相似文献   

10.
用气相色谱-质谱法(GC-MS)定量分析了2013年9月南昌市PM_(2.5)中16种优控多环芳烃(PAHs)含量.结果表明,PAHs总浓度平均值为17.95 ng·m~(-3),变化范围为3.55—39.97 ng·m~(-3).不同环数多环芳烃占总浓度比例由大到小依次为:5环(50.45%)4环(19.32%)6环(17.99%)2环(6.34%)3环(5.90%),表现出明显的机动车尾气排放特征.通过计算PAHs的苯并[a]芘(BaP)毒性当量浓度(9.458—14.454 ng·m~(-3)),表明南昌市PAHs对人体健康存在潜在危害.特征化合物比值法和主成分分析法结果表明,燃煤、机动车尾气、农业燃烧及少量的石油挥发是南昌市PM_(2.5)中PAHs的主要污染源.  相似文献   

11.
建立了快速溶剂(ASE)提取,高效液相色谱-二极管紫外阵列/荧光串联法测定土壤中18种多环芳烃.通过选择净化小柱和仪器条件的优化,实现了18种多环芳烃组分的完全分离及高灵敏度检测,该方法二极管紫外阵列(PDA)检测器和荧光(RF)检测器检出限分别为0.04—0.6μg·kg-1和0.002—0.07μg·kg-1;4种浓度水平(PDA检测器:0.5μg、2μg;RF检测器:0.02μg、0.05μg)土样加标回收率稳定在82.8%—122%之间,RSD为1%—5%之间.  相似文献   

12.
采集我国某大型钢铁企业22个表层土壤(0—20 cm)样品,采用气相色谱-质谱(GC-MS)分析了其中16种多环芳烃(PAHs)的含量,并采用荷兰、加拿大土壤标准及苯并[a]芘的毒性当量浓度(TEQBa P)对PAHs生态风险进行评价.结果表明,土壤中∑16PAHs含量范围为21.0—20062.0μg·kg~(-1),平均值为2564.7μg·kg~(-1),单体以Flu、Pyr的含量最高,较之背景点土壤中PAHs含量,平均富集系数为22.9(Bk F)—304.0(Flu).与国内同类研究相比,该钢铁厂表层土壤中PAHs污染处于中等水平.各采样点中PAHs组成主要以4环为主,占31.9%—100%,5环组分仅次于4环.相关性分析表明,PAHs低环(2—3环)与中环(4环)组分之间相关性更强,且二者与TOC相关性较高环组分显著.50.0%的采样点超过荷兰土壤标准目标参考值,该钢铁厂表层土壤已处于中等风险水平,污染主要集中在球团厂、焦化厂、炼铁厂和厂前交通繁忙区.其土壤潜在风险已呈增加趋势,有必要进行能源结构改造并加强污染监控.  相似文献   

13.
采用自动索氏抽提-凝胶渗透色谱(GPC)-气相色谱/质谱技术,建立了沉积物中多环芳烃和有机氯农药的检测方法.通过对自动索氏抽提提取条件、凝胶渗透色谱净化条件进行优化.以丙酮∶正己烷(V∶V=1∶1)作为提取溶剂,提取温度160℃,用乙酸乙酯∶环己烷(V∶V=1∶1)定容至40 mL,转移上GPC.GPC在线浓缩系统真空腔真空度为180 mbar/190 mbar,以乙酸乙酯∶环己烷(V∶V=1∶1)为流动相,流速为5 mL·min-1,并采用气相色谱-质谱法定性和定量分析.在优化条件下,16种多环芳烃和19种有机氯农药在10—1000μg·L-1范围内具有良好的线性关系(R20.99),检出限(S/N=3)为0.008—0.353μg·kg-1.加标水平为10、50、100μg·kg-1时,平均加标回收率分别为77.6%—106.1%、79.9%—108.7%和80.6%—107.8%,相对标准偏差(RSDs,n=5)均小于10%.  相似文献   

14.
长江重庆段表层水体中多环芳烃的分布及来源分析   总被引:5,自引:0,他引:5  
采集了长江重庆段干流以及重要支流共7个断面的表层水样,采用液相色谱法分析15种优先控制的多环芳烃(PAHs).结果表明,水体中总PAHs浓度范围为6.44—109.39 ng·L-1,平均值为41.83 ng·L-1.在5个断面水体中检出苯并(a)芘,浓度为0.05—1.32 ng·L-1,低于我国地表水标准限值(2.8 ng·L-1).长江重庆段的PAHs浓度水平低于大部分国内其他河流,与国外一些河流的浓度水平相当.PAHs组成以中低环PAHs(3环和4环)为主,平均比例分别为55.7%和38.8%,高环PAHs(5环和6环)含量较低,分别占3.6%和1.9%.示踪PAHs比值法结果显示长江重庆段表层水体PAHs主要来源于石化产品的泄漏污染.  相似文献   

15.
本文采用全自动固相萃取-气相色谱-串联质谱(GC-MS/MS)分析水质中9种N-亚硝胺类化合物.水样以10 mL·min~(-1)速度通过Cleanert NDMA-SPE(1000 mg/6 mL)进行富集,用20%的甲醇水溶液淋洗去除杂质和破坏柱填料表层的水膜,再用二氯甲烷溶剂洗脱,收集的固相萃取洗脱液浓缩后进行GC-MS/MS分析.采用Rtx-Wax色谱柱分离,MRM模式下进行检测,内标法定量.实验结果表明,9种目标物在1.00—100μg·L~(-1)范围内线性关系良好,相关系数大于0.999;方法检出限为0.1—0.5 ng·L~(-1).在低、中、高的加标水平下,9种N-亚硝胺类化合物的回收率分别为71%—94%、74%—95%和75%—103%,相对偏差分别为6.7%—15.8%、5.1%—12.3%和4.5%—9.6%.  相似文献   

16.
本文对气相色谱-质谱联用法(GC-MS)测定塑胶跑道面层中18种多环芳烃(PAHs)的前处理方法进行了讨论.以样品颗粒物直径、超声萃取时间、颗粒物存放时间、样品净化方式为试验因素,优选出测定多环芳烃的最佳样品处理条件.称取10目到20目之间的样品0.2 g,加入10 mL乙酸乙酯,60℃超声萃取60 min,取上清液,净化时采用12 mL洗脱剂,氮吹近干后加入3种混合内标溶液,用GC-MS分离和检测.以3倍信噪比计算18种多环芳烃检出限,以10倍信噪比计算定量限,各组分检出限范围为0.0048—0.030 mg·kg~(-1),定量限范围为0.010—0.099 mg·kg~(-1).6次平行测定RSD%均小于10%,样品加标回收率在75.50%—125.19%.方法精密度好,准确度高,适用于塑胶跑道中18种PAHs的日常检测.  相似文献   

17.
本文采用GC-MS结合同时溶剂浓缩(CSR)大体积不分流进样技术,建立了高效、灵敏测定环境水体中18种PAHs的检测方法.优化了提取溶剂种类、用量等参数,并确定以含多环芳烃内标的0.5 m L环己烷做溶剂作为最佳提取条件;采用GC-MS进行分析,通过在分析柱与分流不分流进样口间串接5m×0.53mm预柱的方式,使得进样体积高达50μL,以提高对多环芳烃的检测灵敏度.实验结果表明,使用大体积不分流进样技术,进样体积为50μL时,对各多环芳烃的检测相比传统不分流进样1μL,灵敏度提高了近50倍;18种多环芳烃在0.1—10μg·L-1的范围内,线性相关系数大于0.9992、精密度小于4.5%(n=8),对实际水样,加标5 ng·L~(-1)的回收率为63.5%—119.5%、加标25、50 ng·L~(-1)水平下的加标回收率为76.2%—119.5%.同时以3倍信噪比计算,各组分方法检出限(MDL)为0.010—0.068 ng·L~(-1).总体来看,采用CSR-GCMS对水体中多环芳烃的分析能够大大减少前处理过程中对样品浓缩的时间耗费,并避免低沸点多环芳烃的损失,是一种非常灵敏、高效的检测方法.  相似文献   

18.
改进的QuEChERS-高效液相色谱法测定水产品中16种多环芳烃   总被引:1,自引:0,他引:1  
采用改进的QuEChERS,对水产样品进行提取、净化,用高效液相色谱仪-荧光/紫外检测器串联检测,建立了同时测定水产品中16种多环芳烃的高效液相色谱分析方法.样品经乙腈提取,Florisil+C18小柱净化,Waters PAH色谱柱分离,以乙腈-水为流动相进行梯度洗脱,外标法定量.本方法中,16种多环芳烃在各自相应浓度范围内线性关系良好,相关系数不低于0.999,检出限为0.1—3.6μg·kg-1.采用该方法在鲤鱼、对虾和牡蛎中进行加标回收实验,回收率在75.0%—118.2%范围内,相对标准偏差(RSD)为2.6%—13.7%.应用本方法对环渤海湾的水产样品进行了调查分析,发现部分样品中含有PAHs,含量为2.11—147μg·kg-1,为下一步开展相关风险评估工作打下了良好工作基础.  相似文献   

19.
本文通过优化色谱条件、前处理条件、样品保存条件等,建立了水中8种烷基酚(APs)和烷基酚聚氧乙烯醚(APEOs)的固相萃取(SPE)—高效液相色谱/荧光检测(HPLC-FLD)分析方法.水样经酸化(p H 2.0—3.0)后加入甲醇至20%体积分数,并以10 m L·min~(-1)速度通过HLB固相萃取小柱进行浓缩和净化,收集SPE洗脱液进行HPLC-FLD检测分析.采用Waters PAH C18色谱柱(4.6×250 mm,5.0μm),以乙腈和5 mmol·L-1醋酸铵溶液进行梯度洗脱,流速为1.0 m L·min~(-1),荧光检测的激发和发射波长分别为228 nm和300 nm.结果表明,8种组分的线性关系良好(R0.998),方法检出限为0.2—0.5μg·L-1.在低、中、高加标水平下,8种组分的回收率分别为82.5%—119.4%、92.1%—118.0%、89.7%—103.9%,平均相对标准偏差分别为5.3%、5.4%、2.9%.该方法灵敏度高、操作简单、易于推广应用,适用于水中多种APs与APEOs的同时分析.  相似文献   

20.
雷沛  潘科  张洪  周益奇  毕见霖 《环境化学》2019,38(3):494-502
本研究设计了一种基于有机提取溶剂进行气态萃取水体和沉积物中有机污染物的快速萃取装置,通过开展空白加标、基质加标以及环境样品重复性验证来确定该装置对水体沉积物中16种优控PAHs的前处理效果.结果表明,16种优控PAHs基质加标的回收率为80%—120%,相对标准偏差(RSD)小于20%,符合US EPA的要求.重复性验证结果显示萃取湖泊沉积物中16种优控PAHs总量(ΣPAHs)的RSD小于10%,河流沉积物的RSD小于20%.该装置具有处理时间短(2h)、对低环PAHs提取效率高(80%—100%)、可批量化处理等特点.本研究萃取装置在萃取时间和试剂消耗方面均优于索氏提取;而在装置操作简便性和分析成本方面也优于微波辅助萃取、加速溶剂萃取.为不同类别有机污染物的同步前处理应用提供了的可能,从而为研究污染物的"复合污染效应"提供技术支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号