首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

2.
土地利用方式直接和间接地影响着城市的颗粒物污染程度,了解土地利用与颗粒物污染的关联规律,对改善环境空气质量具有重要的意义。选择颗粒物污染问题突出的北京市为研究对象,以空气质量地面监测站的PM_(2.5)质量浓度数据和卫星遥感解译数据为基础,借助地理信息系统和数理统计方法,对不同土地利用方式特别是林地覆被与细颗粒物分布的关联性进行分析。研究结果表明,(1)北京市的PM_(2.5)质量浓度分布在空间上呈由西北至东南逐级递增的趋势,东南部(107.0μg·m~(-3))西南部(96.2μg·m~(-3))城六区(95.3μg·m~(-3))东北部(79.6μg·m~(-3))西北部(79.0μg·m~(-3)),季节分布表现为冬季(122.0μg·m~(-3))春季(81.2μg·m~(-3))秋季(76.8μg·m~(-3))夏季(72.9μg·m~(-3)),不同土地利用方式PM_(2.5)质量浓度表现为耕地(96.9μg·m~(-3))建成区(95.7μg·m~(-3))未利用土地(91.5μg·m~(-3))水域(82.8μg·m~(-3))草地(80.9μg·m~(-3))林地(79.1μg·m~(-3))。(2)以各监测站点为中心建立不同半径缓冲区,随着缓冲区半径的不断增加林地覆被率与PM_(2.5)质量浓度的负相关性不断增强。当缓冲区半径达到1 000 m时,各个月份林地覆被率与PM_(2.5)质量浓度均在α=0.05水平上呈显著负相关。(3)以各监测站点为中心的3 000 m半径缓冲区内落叶阔叶林、常绿针叶林、落叶阔叶灌木林、常绿阔叶灌木林、乔木园地面积与PM_(2.5)质量浓度均呈负相关关系。研究结果表明,实行未利用土地、耕地以及部分建成区的土地利用方式向林地、草地转化是北京市防控颗粒物污染的可行方略。  相似文献   

3.
本研究采集2015年9月至2016年8月石河子市不同类型天气下大气颗粒物样品,根据气象条件进行霾与沙尘分类,使用热光碳分析仪DRI 2001A进行有机碳(organic carbon,OC)与元素碳(elemental carbon,EC)测定,采用最小比值法估算二次有机碳(second organic carbon,SOC)质量浓度,主成分分析法(principle component analysis,PCA)分析其可能来源.结果表明:中霾天气下OC和EC平均质量浓度达到20.85±5.03、2.75±0.46μg·m~(-3)(沙尘天气18.9±4.4μg·m~(-3),2.6±0.9μg·m~(-3)).二次有机碳SOC在中霾天气下质量浓度为10.62±3.94μg·m~(-3)(沙尘天气9.3±3.7μg·m~(-3)),占OC浓度67%(沙尘天气67%).霾与沙尘天气OC与EC相关系数低于非霾非沙尘天气,表明霾与沙尘天气较非霾非沙尘天气有着复杂的污染源.PCA分析表明,霾与沙尘天气下的碳气溶胶的主要排放源为机动车尾气,固定燃煤源和道路扬尘.本项研究分析了石河子市霾和沙尘天气下的碳气溶胶分布,有望为中国西部城市的霾和沙尘天气治理提供依据.  相似文献   

4.
于2014年4月在南充市城区选择一条固定线路,使用数字直读式颗粒物测定仪连续14 d对自行车、公交车、私家车、摩托车、出租车和步行等6种出行方式PM2.5个体暴露浓度进行监测;获取采样期间的气象数据和大气环境PM2.5浓度数据,以了解不同出行方式PM2.5个体暴露水平及其影响因素.结果表明,不同出行方式中PM2.5个体暴露浓度最高和最低的分别为私家车(51.2±29.2)μg·m-3和出租车(40.2±29.8)μg·m-3;在出行高峰期和工作日,PM2.5个体暴露浓度分别高于非出行高峰期和周末.计入个体暴露时间和呼吸率,最高和最低PM2.5个体暴露量分别为步行(20.9±17.9)μg和出租车(2.8±2.1)μg.应用相关性分析和线性回归分析得出,降雨和风速有利于PM2.5个体暴露浓度降低;大气环境PM2.5浓度对个体暴露量有正相关影响.  相似文献   

5.
利用2018年1—12月西安市13个环境空气质量监测点的六项大气污染常规分析指标(PM_(10)、PM_(2.5)、O_3、SO_2、NO_2和CO)逐小时监测数据,结合气象条件(温度、相对湿度、风向、风速、大气压、光照、紫外辐射、混合层高度及大气能见度)和颗粒物样品采集,对西安市近地面大气污染物浓度特征进行分析,结果表明,西安市近地面大气污染物浓度呈现明显的季节变化特征,冬季空气污染物主要为颗粒物(PM_(10)、PM_(2.5))对应质量浓度分别为:(154.04±92.88)、(101.84±60.11)μg·m~(-3),PM_(2.5)/PM_(10)的值为0.66,夏季空气污染物主要为O_3,质量浓度为(89.07±20.62)μg·m~(-3);西安市冬季PM_(2.5)数浓度、表面积浓度、质量浓度分别为(51 890±14 619)cm~(-3)、(2 882.21±939.83)μm~2·cm~(-3)、(0.32±0.13)mg·m~(-3),PM_(10)数浓度、质量浓度、表面积浓度分别为(51 897±14 618)cm~(-3)、(3 410.50±1 060.31)μm~2·cm~(-3)、(0.86±0.29)mg·m~(-3),数浓度粒径分布集中在0.010≤d_p≤0.484μm,占总数浓度的99.13%,表面积浓度粒径分布集中在0.072≤d_p≤8.136μm,占总表面积浓度的98.32%,质量浓度粒径分布集中在0.316≤dp≤8.136μm,占总质量浓度的98.75%。颗粒物数浓度对大气能见度影响最大的3个粒径段分别为d_p=0.762μm、d_p=1.956μm、d_p=1.232μm,3个粒径段与能见度的R~2(拟合优度)分别为:0.840、0.789、0.775;西安市夏季,在近地面环境温度大于30.23℃,相对湿度小于58.09%,光照强度大于107.83 W·m~(-2),紫外辐射强度大于324.10μW·cm~(-2)时,有利于近地大气层中高质量浓度O_3((112.16±53.01)μg·m~(-3))的生成与累积。研究结果可为西安市及汾渭平原其他城市大气污染物减排、大气污染防治策略的制定提供数据支持。  相似文献   

6.
为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM_(2.5)样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM_(2.5)中OC和EC的平均质量浓度分别是13.5±14μg·m~(-3)和6.5±6.1μg·m~(-3),其中OC浓度随季节变化顺序为冬季春季夏季秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM_(2.5)比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R~2=0.4054),而春季(R~2=0.7659)、秋季(R~2=0.8253)、冬季(R~2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9μg·m~(-3)、1.0±0.8μg·m~(-3)、 0.5±0.4μg·m~(-3)、 3.6±3.5μg·m~(-3),冬季SOC浓度最高. 8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.  相似文献   

7.
为研究北京城区初冬季大气颗粒物中水溶性二次无机离子及元素的组成特征,2016年11月,利用青岛明华MH-16型PM_(2.5)采样器在北京城区采样点进行大气颗粒物采样,样品采用离子色谱和电感耦合等离子体质谱分析.结果表明,NO_3~-、SO_4~(2-)和NH_4~+在观测期间平均浓度分别为20.5±11.4μg·m~(-3),13.4±12.1μg·m~(-3)和10.7±8.8μg·m~(-3),SNA(sulfate、nitrate、ammonium)总浓度为44.6±45.2μg·m~(-3).采样期间颗粒物中K、Fe、Na、Zn、Ca、Al、Mg及Pb元素的质量浓度比较高,占所分析元素总浓度的94.5%.采样期间Cr、Ni、Pb、Mn等元素的富集因子10,Zn、Cu、As、Mo等元素的EF值超过100.  相似文献   

8.
随着城市化进程的加快,生态环境恶化,改善空气质量已成为社会所关注的重要环境问题。不同的植被结构可以有效调控大气颗粒物浓度,提高负离子的浓度,是改善空气质量的重要组成部分。为探究不同植被结构对空气质量的调控能力以及影响空气质量的因素,以沈阳市东陵公园为研究对象,采用定点观测法,监测8块不同植被结构内大气颗粒物(PM_(2.5)、PM_(10))和空气负离子浓度,并同步观测气象因子。研究结果表明,(1)不同植被结构调控大气颗粒物的能力存在差异,但是不显著。PM_(2.5)和PM_(10)日平均质量浓度在S1(稠李Padus avium+萱草Hemerocallis fulva)均为最高,分别是(48.63±18.05)μg·m~(-3)和(68.55±20.64)μg·m~(-3);S3(云杉Picea asperata+榆叶梅Amygdalus triloba+牛筋草Eleusine indica)最低,分别是(28.95±8.91)μg·m~(-3)和(45.21±10.38)μg·m~(-3)。PM_(2.5)和PM_(10)日平均质量浓度变化范围分别为(28.95—48.63)μg·m~(-3)和(45.21—68.55)μg·m~(-3)。(2)不同植被结构内空气负离子浓度存在显著性差异。空气负离子日平均浓度在S7(油松Pinus tabuliformis+桃叶卫矛Euonymus bungeanus+玉簪Hosta plantaginea)最高,为(1 007.50±53.10)ion·cm~(-3);S1(稠李+萱草)最低,为(446.21±34.9) ion·cm~(-3)。空气负离子日平均浓度范围(446.21—1 007.50) ion·cm~(-3)。(3)大气颗粒物(PM_(2.5)、PM_(10))和空气负离子浓度与乔木层郁闭度和相对湿度呈正显著相关,而与温度呈负显著相关;大气颗粒物浓度与空气负离子浓度呈负显著相关。以上研究结果可为优化城市绿地植被结构和改善空气质量提供一定的借鉴。  相似文献   

9.
为研究华北平原夏季PM2.5中有机气溶胶污染特征,于2015年6月20日至2015年7月30日对山东禹城生态站大气中PM_(2.5)进行了观测研究.结果表明,观测期间禹城大气PM_(2.5)日平均浓度为87.15±32.27μg·m~(-3),与我国《环境空气质量标准》(GB3095-2012)二级标准75μg·m~(-3)相比,超标率为58.53%.检测到的10种糖醇的平均总浓度为177.89±145.38 ng·m~(-3)(白天)和226.97±196.88 ng·m~(-3)(晚上),分别占WSOC的3.18%(白天)和4.97%(晚上).脱水糖(左旋葡聚糖、半乳聚糖和甘露聚糖)是检测到的糖类化合物中的主要组成部分,分别占总浓度的58.52%(白天)和75.61%(晚上).EC、OC、WSOC的平均质量浓度分别为2.68±2.8μg·m~(-3),7.51±4.4μg·m~(-3)、5.57±3.95μg·m~(-3),分别占PM_(2.5)质量浓度的3.08%、8.62%和7.34%.WSOC占OC的74.16%,表明有机碳中大部分是水溶性组分.利用EC示踪法和WSOC法估算的二次有机碳(SOC)的质量浓度分别为4.08±2.25μg·m~(-3)和4.90±3.11μg·m~(-3),且两种方法计算的SOC呈现很好的相关性(r=0.77,P0.001).估算得到的SOC为白天高于夜间,与白天光化学反应比较强烈、产生的二次有机物较多一致.相关性分析表明,OC、WSOC和SOC与相对湿度呈现显著的负相关,与SO_2表现出较强的正相关关系,与温度均没有表现出相关性.  相似文献   

10.
为探究济南市采暖季环境空气中PM_(2.5)中碳组分的污染情况及主要来源,于2017年11月16日-2018年3月31日和2017年11月16日-28日分别进行了居住区和背景区离线颗粒物采样,运用美国沙漠研究所DRIModel2015多波长热/光学碳分析仪对大气PM_(2.5)中碳组分进行了分析。研究结果显示,日均质量浓度ρ(OC)、ρ(EC)和ρ(PM_(2.5))在居住区为9.26、3.16、85.32μg·m~(-3),在背景区为2.88、1.44、59.27μg·m~(-3),说明居住区碳组分污染程度明显高于背景区。居住区日均质量浓度最高的碳组分为OC4、OC3和EC2;OC3和OC4日均质量浓度随污染等级从优向重度污染变化的过程逐渐增大,且OC日均质量浓度的变化情况跟OC3和OC4日均质量浓度变化相一致。但OC/PM_(2.5)和EC/PM_(2.5)均随污染等级的加重而呈下降趋势,可见OC和EC并不是济南采暖季重污染天气的控制因子。PMF来源解析结果显示,济南市采暖季居住区碳组分贡献较大的源为燃煤源、汽油车尾气和道路尘。结合碳组分在线监测仪器(美国SUNSET公司,型号RT-4)同期OC和EC质量浓度数据,采用Cabada改进后的方法,计算出SOC和POC质量浓度分别为1.14μg·m~(-3)和4.69μg·m~(-3)对采样时间段内一次典型重污染过程进行分析,发现CO、EC、POC等一次污染物的大量排放、不利的气象因素、区域传输等因素共同导致了此次污染过程的的形成。  相似文献   

11.
灰尘是一种成分和来源复杂的环境介质,可以积累大量重金属,与环境质量和人类健康密切相关.本研究对河南省某高校10名本科生和10名保安分别在不同空气质量"轻度污染"和"重度污染"的情况下进行手掌擦拭采样,样品经微波消解后使用电感耦合等离子体质谱分析仪(ICP-MS)进行定量检测,研究两类人群对9种典型重金属铜(Cu)、铬(Cr)、锌(Zn)、砷(As)、镉(Cd)、铅(Pb)、镍(Ni)、锰(Mn)、钴(Co)的暴露水平和人群差异,并进行健康风险评估.结果显示,整体而言,两类人群对Zn(保安ND—2660μg·m~(-2),本科生ND—1350μg·m~(-2))的暴露水平最高,Cu(保安ND—70.2μg·m~(-2),本科生0.023—83.4μg·m~(-2))次之,As(保安ND—2.34μg·m~(-2),本科生ND—5.72μg·m~(-2))、Co(保安ND—7.93μg·m~(-2),本科生ND—6.02μg·m~(-2))最低;本科生对重金属的皮肤暴露具有性别差异;两类人群在空气质量为轻度污染条件下的暴露水平比严重污染条件高;保安的暴露风险较在校本科生高,但都低于风险阈值,不具备非致癌风险.  相似文献   

12.
碳质气溶胶是大气颗粒物的重要组成部分,具有很强的环境和气候效应,是气溶胶科学研究领域的热点.为探究庐山风景区居民区PM2.5中碳质组分的污染特征及来源,于2019年12月2日—2020年10月31日在庐山风景区居民区进行PM2.5样品采集,并对其碳质组分有机碳(OC)和元素碳(EC)进行分析.结果表明,观测期间庐山风景区居民区PM2.5的平均质量浓度为(46.45±18.64)μg·m-3,其中OC和EC平均质量浓度分别是(4.08±1.61)μg·m-3和(0.23±0.10)μg·m-3,占PM2.5总质量的8.78%和0.50%.且碳质颗粒的污染水平普遍低于城市地区,介于国内其他典型高山背景点之间.采用EC示踪法对PM2.5中的二次有机碳(SOC)进行估算,发现采样期间SOC的平均浓度为(1.51±1.22)μg·m-3,占OC的33.2%,表明SOC是PM2.5...  相似文献   

13.
对乌鲁木齐市中心区域树木年轮实验室(TRL)和黑山头(HST)2013年1月─2014年2月期间采集的大气细颗粒物(PM_(2.5))样品,利用热光碳分析仪分析了其中的有机碳(OC)和元素碳(EC)浓度水平、污染特征及其可能来源,以期为深入了解乌鲁木齐市颗粒物污染现状,确定乌鲁木齐市大气污染治理重点,制定大气污染防治策略提供依据。结果表明:年轮室OC和EC的质量浓度分别为(15.73±8.50)和(5.48±2.70)μg·m-3,分别占PM_(2.5)质量浓度的9.15%和3.19%,黑山头OC和EC的质量浓度分别为(11.31±7.29)和(4.14±3.26)μg·m-3,分别占PM_(2.5)质量浓度的9.26%和3.06%。年轮室OC的月变化呈现单峰型,4月份浓度最小,1月份浓度最大,黑山头OC的月平均浓度1月份最大,6月份最小,两个站点EC月平均浓度分布均无明显的特征,两个站点最大浓度均出现在2013年1月。OC质量浓度的季节变化是冬季(19.80±8.53)μg·m-3秋季(12.83±8.25)μg·m-3夏季(9.82±2.83)μg·m-3春季(9.31±3.91)μg·m-3,EC质量浓度的季节变化是秋季(5.72±3.35)μg·m-3冬季(5.25±2.61)μg·m-3夏季(5.21±2.37)μg·m-3春季(4.89±2.31)μg·m-3。在不同的季节,OC浓度变化比较明显,EC排放相对稳定。乌鲁木齐春夏季OC和EC的相关性较高,并且相关系数较为接近,说明春夏两季OC和EC来源相对简单,来源一致,主要来源于交通源机动车尾气的排放;秋冬季相关性较低,说明OC和EC来源复杂,秋冬季进入采暖期,采暖期燃煤燃气增加,排放量增大,排放源结构复杂。  相似文献   

14.
水溶性无机离子是PM_(2.5)的主要组分之一,对研究PM_(2.5)的物理化学性质,来源及其形成机理具有重要意义.本研究于2017年9月—2017年11月期间在贵阳城区采集了80个PM_(2.5)样品,并测定了8种水溶性离子浓度,探讨贵阳秋季PM_(2.5)水溶性离子组成特征及来源.结果表明贵阳秋季PM_(2.5)中无机离子的平均质量浓度为15.99μg·m~(-3),阴离子和阳离子的平均质量浓度分别为10. 90μg·m~(-3)、5. 09μg·m~(-3); SO_4~(2-)(8. 53±4.63μg·m~(-3))平均质量浓度最高,其次是NH_4~+(2.56±1.62μg·m~(-3))、NO_3~-(2.21±2.96μg·m~(-3))、Ca~(2+)(1.98±0.88μg·m~(-3)),最后依次是K~+(0.37±0.24μg·m~(-3))、Cl-(0.16±0.11μg·m~(-3))、Mg~(2+)(0.11±0.03μg·m~(-3))、Na~+(0.07±0.06μg·m~(-3)); NH_4~+、SO_4~(2-)、NO_3~-是主要水溶性离子,所占比例为83%; NO_3~-/SO_4~(2-)值平均为0.21±0.12,远小于1,说明贵阳秋季PM_(2.5)以固定源污染为主.相关性分析表明,PM_(2.5)中NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4、NH_4NO_3的形式存在,Ca~(2+)与Mg~(2+)来源可能相同.结合富集系数分析NO_3~-、SO_4~(2-)、Ca~(2+)、K~+、Mg~(2+)基本都是来源于陆源贡献,NO_3~-、SO_4~(2-)是人为源,Ca~(2+)、K~+、Mg~(2+)是地壳源,此外Mg~(2+)还有一部分海源贡献.  相似文献   

15.
为研究广州地区典型光化学污染过程形成的高浓度臭氧事件的变化特征及成因,2011年5月17—20日利用广州番禺大气成分站(GPACS)对污染气体(O_3、VOCs、NO_2、NO)、颗粒物(PM_1、PM_(2.5)、PM_(10))、能见度以及气象要素进行了监测.结果表明,光化学污染过程期间,臭氧总体浓度比较高,最大臭氧1 h浓度分别为103.8×10~(-9)、169.9×10~(-9)、146.1×10~(-9)以及115.5×10~(-9),远超国家二级标准93×10~(-9)(200μg·m~(-3)).但颗粒物浓度保持较低水平,颗粒物日均值远低于国家二级标准(PM_(10)为150μg·m~(-3),PM_(2.5)为75μg·m~(-3)),能见度整体较高.芳香烃和烯烃是臭氧生成潜势最大的两个成分,其中异戊二烯、间二甲苯、对二甲苯、甲苯等物种对臭氧生成贡献大.均压场-冷锋前天气形势带来的不利于污染物扩散的气象条件、强烈的辐射以及高浓度VOCs共同导致了这次高浓度臭氧污染事件的发生.  相似文献   

16.
以北京市西三环地区北京工商大学作为采样点,在2017年3—5月共采集气相、颗粒相(PM_(2.5)、PM_(10)、TSP)样品54个,对样品中28种PCBs单体进行定性定量分析,研究大气中多氯联苯(PCBs)的污染特征、在不同粒径颗粒物(PM_(2.5)、PM_(10)、TSP)中的分布规律和气粒分配行为.结果表明,北京市西三环地区大气中PCBs总浓度为144—859 pg·m~(-3),在国内外处于中等水平.其中,气相样品中PCBs浓度为131—814 pg·m~(-3),平均浓度为495 pg·m~(-3),占大气中PCBs总浓度的94.95%;颗粒相样品中PCBs浓度为12.3—48.9 pg·m~(-3),平均浓度为26.3 pg·m~(-3),占大气中PCBs总浓度的5.05%.低氯代PCBs更多地分布在气相上,高氯代PCBs更多地分布在颗粒相上.对不同粒径颗粒物(≤2.5μm、2.5—10μm、10μm)中PCBs的分析表明,PCBs主要分布在≤2.5μm的颗粒物中.不同粒径颗粒物中所含PCBs同系物的组成比例接近,以三氯至七氯为主,占颗粒物中PCBs总含量的88%以上.用过冷饱和蒸气压P0L(Pa)和分配系数Kp来描述PCBs的气粒分配行为,lg Kp-lg P0L的斜率为-0.3653,说明北京西三环地区大气中PCBs的气粒分配未达到平衡状态,在气粒分配过程中以吸收机制为主.  相似文献   

17.
在北京市市区/交通干道(A地质大学东门、B地质大学测试楼顶),工业区(C首钢焦化、D高井热电厂)和背景点(E十三陵),同时采集了冬季大气颗粒物PM_(10)样品.利用US EPA 1613B方法,采用同位素稀释、高分辩率气相色谱/高分辩率质谱(HRGC/MS)联用技术,对比分析了PM_(10)中17种二噁英(PCDD/Fs)的浓度水平和区域分布特征.结果表明,5个采样点PM_(10)的质量浓度范围是140—264μg·m~(-3),日均值为184μg·m~(-3)比国家二级标准(150μg·m~(-3))高23%.所有采样点17种PCDD/Fs的总浓度范围1.96—4.80 pg·m~(-3),平均值3.69 pg·m~(-3),总毒性当量∑TEQ范围是148—353 fg I-TEQ·m~(-3),平均271 fg I-TEQ·m~(-3);PCDD/Fs污染水平最高出现在工业区,其次是市区,背景点最低.  相似文献   

18.
对上海市城区和郊区采集的64个总悬浮颗粒物(TSP)样品进行GC/MS分析,结果表明:全年PAHs浓度范围为2.25-221.6ng·m~(-3),并呈现明显的秋、冬季节高而夏季低的变化特征,且PAHs年平均值郊区稍微高于城区.多环芳烃中苯并(b k)荧蒽、茚并(1,2,3-cd)芘、晕苯等化合物相对含量较高,四环以上的组分全年平均含量在90%以上.采用苯并(a)芘和苯并(a)芘等效质量浓度(BaPE)对上海市大气颗粒物中的PAHs进行致癌风险评价,BaP年均值在城区和郊区分别为2.57ng·m~(-3)和2.86ng·m~(-3),秋季BaP年均值超过了居民区标准限值(5.0ng·m~(-3)).BaPE在城区和郊区的年均浓度分别为5.82ng·m~(-3)和7.24ng·m~(-3),秋季污染最为严重.  相似文献   

19.
以具有致癌毒性的多环芳烃(polycyclic aromatic hydrocarbons,PAHs)为对象,本研究于2014年1月(冬季)在湖北恩施农村地区使用煤炭和薪柴的家庭中同步采集了室内外空气样品,分析了室内外空气中28种PAHs(∑PAH28)的浓度水平、成分谱和粒径分布,重点比较了不同燃料家庭的污染特征差异,并据此估算了暴露人群的健康风险。结果表明,在燃煤家庭,∑PAH28的室内和室外浓度分别是(507±449) ng·m~(-3)和(120±18) ng·m~(-3);而在燃柴家庭,其室内和室外∑PAH28浓度分别是(849±421) ng·m~(-3)和(268±44) ng·m~(-3)。受室内排放源影响,室内PAHs浓度显著高于室外,室内外∑PAH28浓度比值在2~13。颗粒态PAHs主要集中在细颗粒物上,PM1.0(空气动力学直径小于1.0μm)上的PAHs占到颗粒态PAHs的50%~80%。燃煤家庭的居民因PAHs呼吸暴露导致的终生致癌风险的中位数是1.8×10~(-5)(四分位距是1.2×10~(-5)~3.1×10~(-5)),使用薪柴的家庭人群暴露风险7.1×10~(-5)(6.5×10~(-5)~7.8×10~(-5))。无论是燃煤还是薪柴的家庭,居民因PAHs呼吸暴露导致的终生致癌风险均超过10-6的可接受风险水平,表明该地区的高浓度PAHs污染致使当地人群存在较高的致癌风险。  相似文献   

20.
为探究重污染天气期间济南市城区和清洁对照点PM_(2.5)及其组分污染特征,于2016年12月31日-2017年1月7日在市监测站和跑马岭进行连续PM_(2.5)样品采集,并对两个点位的PM_(2.5)及其组分(水溶性离子和碳质组分)污染特征进行分析。结果表明,重污染天气期间市监测站PM_(2.5)质量浓度(260±77)μg·m~(-3)是跑马岭(85±17)μg·m~(-3)的3倍,表明该重污染天气过程对济南市城区影响程度明显大于清洁对照点跑马岭。市监测站水溶性离子浓度高低顺序为SO_4~(2-)NO_3~-NH_4~+Cl~-K~+Na~+Ca~(2+)F~-,跑马岭水溶性离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-K~+Na~+Ca~(2+)F~-。市监测站和跑马岭二次无机离子(SNA)质量浓度分别为(134.7±49.5)μg·m~(-3)和(46.2±19.0)μg·m~(-3),在PM_(2.5)中占比分别是51.8%和54.4%,两个点位PM_(2.5)浓度差别很大,但SNA在PM_(2.5)中占比相差不大。通过NH_4~+计算值与实测值相关性分析可知,市监测站和跑马岭PM_(2.5)中NH_4~+均主要以(NH_4)_2SO_4和NH_4NO_3形式存在。市监测站SOR和NOR分别为0.44和0.32,跑马岭SOR和NOR分别为0.32和0.44,SOR和NOR的值均大于0.1,表明大气中SO_2和NO_2的二次氧化程度较高。采用OC/EC最小比值法估算得到市监测站和跑马岭SOC分别为8.3μg·m~(-3)和1.8μg·m~(-3),分别占OC的38.2%和20.9%,这表明市监测站OC二次反应程度明显高于跑马岭。市监测站有机碳(OC)和元素碳(EC)相关性(R~2=0.57)明显弱于跑马岭(R~2=0.92),表明市监测站OC和EC来源比较复杂,更有利于SOC的生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号