首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究天津市夏季PM2.5中碳组分的时空变化特征及来源,于2019年7—8月设立2个点位分昼夜采集天津市PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量。结果表明,城区PM2.5、OC和EC浓度日均值分别为(53.4±20.8)μg·m-3、(8.72±2.56)μg·m-3和(1.67±0.90)μg·m-3,郊区PM2.5、OC和EC浓度日均值分别为(54.2±24.5)μg·m-3、(7.54±2.50)μg·m-3和(1.82±1.06)μg·m-3;白天PM2.5、OC、EC的平均浓度分别为(47.3±16.1)μg·m-3、(8.7±2.1)μg·m-3和(1.5±0.6)μg·m-3,夜间PM2.5、OC、EC的平均浓度分别为(60.2±26.2)μg·m-3、(7.5±2.9)μg·m-3和(2.0±1.2)μg·m-3。OC浓度表现为城区高于郊区,白天高于夜间;EC及PM2.5浓度表现为郊区高于城区,夜间高于白天。OC/EC比值分析得,城区(6.04)高于郊区(5.08);白天(6.58)高于夜间(4.54)。城区OC与EC相关性弱于郊区,白天OC与EC相关性弱于夜间。采用EC示踪法与MRS模型对SOC含量进行估算,得到白天与夜间SOC浓度分别为(5.71±1.35)μg·m-3和(3.81±1.20)μg·m-3,白天SOC污染比夜间严重。丰度分析与主成分分析的结果表明,天津市夏季城郊区PM2.5中碳组分均主要来源于燃煤和机动车尾气排放。  相似文献   

2.
为研究中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源,于2018年12月5日—2019年1月30日分别在天津(TJ)、上海(SH)和青岛(QD)同步采集PM2.5样品。结果表明,天津、上海和青岛PM2.5的平均浓度分别为(116.96±66.93)、(31.21±25.62)、(74.93±54.60)μg·m-3,OC和EC的空间分布均为天津(18.69±7.95)μg·m-3和(4.98±2.08)μg·m-3>青岛(16.45±8.94)μg·m-3和(2.01±1.04)μg·m-3>上海(7.28±3.11)μg·m-3和(1.05±1.25)μg·m-3。3个站点的OC和EC均呈现较好的相关性,表明OC和EC具有相似的来源;OC/EC比值范围在2.37—7.53、5.47—46.41和4.77—13.36之间,证明各采样点均存在二次有机碳(SOC)的生成;采用最小R2法(MRS)估算SOC浓度,得到3个采样点SOC的平均质量浓度为(5.09±4.68)、(3.90±1.65)、(4.21±4.31)μg·m-3,分别占OC总量的27.2%、55.8%和19.5%,其中上海的SOC在OC中的占比最大,说明上海二次有机碳污染较为严重,这主要归因于冬季严重污染源排放和有利的二次转化气象条件,而天津和青岛的碳组分主要来自污染源的直接排放。主成分分析(PCA)结果发现,天津PM2.5中碳组分主要来源于道路尘、生物质燃烧和机动车尾气,上海PM2.5中碳组分主要来源于生物质燃烧、道路扬尘和机动车尾气。青岛PM2.5中碳组分主要来源于道路扬尘、机动车尾气。后向轨迹聚类分析表明,来自西北方向的气团对天津的影响较大,PM2.5和碳组分的浓度值最大;而对上海而言,主要受北方气溶胶经过海面又传输回上海的气团的影响;青岛站点主要受华北地区污染物和本地排放源的影响。  相似文献   

3.
于2017年冬季12月13—21日在青藏高原东缘理塘地区分昼夜采集PM2.5样品,并用DRI2001A热光碳分析仪测定了有机碳(OC)和元素碳(EC)的质量浓度,研究青藏高原PM2.5中碳组分的化学特征及主要来源,以期为理塘地区制定污染排放政策提供参考。结果表明,2017年冬季青藏高原东缘理塘地区PM2.5平均质量浓度为44.34μg·m?3,OC和EC的质量浓度为12.72μg·m?3和3.85μg·m?3,分别占PM2.5质量浓度的29.61%和8.96%。通过经验公式,计算得到总碳气溶胶(TCA)质量浓度为24.20μg·m?3,占PM2.5的54.84%,说明碳质气溶胶对青藏高原东缘理塘地区PM2.5有着十分重要的贡献。OC和EC在白天和夜间都有较高的相关性(相关系数分别为0.74和0.91),表明OC和EC的来源基本一致,受燃烧源影响较大。其中白天的相关系数低于夜间,说明青藏高原东缘理塘地区白天碳组分来源相对复杂。昼夜浓度对比显示,青藏高原东缘理塘地区PM2.5白天和夜间的质量浓度分别为53.88μg·m?3和33.44μg·m?3,OC和EC浓度白天高于夜间,表明白天人为排放相对较高。冬季观测期间,PM2.5中二次有机碳(SOC)昼夜浓度分别为1.11μg·m?3和3.03μg·m?3,分别占OC质量浓度的7.09%、26.59%,表明青藏高原东缘理塘城区白天碳组分主要为一次源。利用PMF 5.0软件对理塘城区碳组分进行进一步的解析,结果显示燃煤和生物质燃烧的混合源对总碳(TC)的贡献高达47.84%,占比最高;其次是汽车尾气和柴油车尾气源,贡献率分别为28.62%和23.54%。  相似文献   

4.
2013年10月到2014年2月在嘉兴城区对大气中细颗粒物的质量浓度和含碳气溶胶进行了在线连续观测,获得秋冬季节碳质气溶胶的变化特征。观测期间,有机碳(organic carbon,OC)的平均质量浓度为12.5μg/m^3,日均质量浓度变化范围为2.1~61.1μg/m^3;元素碳(elemental carbon,EC)的平均质量浓度为4.2μg/m^3,日均质量浓度变化范围为0.7~17.1μg/m3。OC和EC分别占PM2.5质量浓度的15.8%和5.3%。总碳气溶胶(total carbonaceous aerosols,TCA=1.6×OC+EC)的平均质量浓度为24.2μg/m3,日均变化范围为4.1~114.9μg/m3,约占PM2.5质量浓度的30.5%。较强的OC与EC相关性表明其具有相似的污染来源。OC/EC值为3.0,说明其受汽车尾气和煤炭燃烧的影响较大。二次有机碳(secondary origin carbon,SOC)的平均质量浓度为6.6μg/m^3,占PM2.5中总有机碳的53.0%。潜在源贡献(potential source contribution function,PSCF)分析表明,EC在长三角地区呈显著的区域性污染,而OC在输送过程中容易老化,区域性污染特征相对较弱。  相似文献   

5.
采集了2018年保定市污染天气的PM2.5样品,采用离子色谱法测定了PM2.5样品中的水溶性离子(WSIs),分析了不同季节PM2.5及其水溶性离子的分布特征,并采用PMF模型对PM2.5进行了源解析.结果表明,采样期间保定市的PM2.5浓度为18.4—258.0μg·m-3,年均值为(91.5±62.5)μg·m-3;季节规律是冬季(160.6μg·m-3)>秋季(105.3μg·m-3)>春季(57.6μg·m-3)>夏季(53.2μg·m-3).WSIs年均值为49.20μg·m-3,占PM2.5.的63.95%,WSIs的季节规律和PM2.5的一致.二次离子占水溶性离子的77.12%.湿度和温度与SOR和NOR成正相关.春夏两季水溶性离子主要以Na...  相似文献   

6.
为探究川南地区大气气溶胶中化学组分与来源特征,于2015年9月—2016年8月在四川盆地南部4个典型代表城市(泸州、内江、宜宾、自贡)采集了226个PM2.5样品,对PM2.5的质量浓度和主要化学组分(水溶性离子和碳质组分)进行测定,并利用颗粒物源解析受体模型对PM2.5来源进行解析.结果表明:川南地区PM2.5日均浓度为46.4—68.0μg·m-3,均高于国家环境空气质量标准年均PM2.5限值(35.0μg·m-3).OC、EC和水溶性二次离子(SO42-、NO3-和NH4+)分别占PM2.5质量的15.7%—22.8%、4.2%—6.4%和28.6%—55.8%.PM2.5及其主要化学组分浓度有显著的季节变化,即冬季浓度显著高于其他季节,夏季浓度最低.泸州除夏季外,其他季节SO42-、NO3-同源性较好;其他城市在冬季,SO42-、NO3-同源性较好.NH4+主要存在形式为NH4NO3、(NH4)2SO4、NH4HSO4.OC、EC来源复杂,主要为机动车源、煤燃烧源和生物质燃烧源.川南地区PM2.5的来源主要受8种因子影响,按总体贡献排序依次为:二次硫酸盐、生物质燃烧、工业源、二次硝酸盐、机动车源、煤燃烧、道路尘埃和建筑尘埃.此外,相比较而言,机动车源贡献在泸州市较凸显,煤燃烧源贡献在宜宾市较凸显.  相似文献   

7.
为阐明大气污染重点整治和新冠疫情影响下我国华北地区城市春节期间重污染过程PM2.5中水溶性无机离子变化特征及其影响因素,本研究结合气态前体物浓度和气象要素,对天津市2018—2020年连续3年春节假期的2次重污染过程PM2.5中主要水溶性无机离子(WSIIs)浓度进行对比分析.结果表明,2018年和2020年春节假期PM2.5平均浓度(98.32μg·m-3和137.7μg·m-3)显著高于2019年(49.97μg·m-3).PM2.5平均浓度在污染期Ⅱ(2020年为206.5μg·m-3)是污染期Ⅰ(2018年98.32μg·m-3)的2.1倍;2次污染事件中NO2浓度变化不大,而SO2浓度在污染期Ⅱ(14.89μg·m-3)是污染期Ⅰ(30.04μg·m-3)的49.6%.SNA在WSIIs中占比超...  相似文献   

8.
为研究北京城区PM_(2.5)中有机碳(OC)和元素碳(EC)的浓度水平、季节变化特征与主要来源,于2015年4月至2016年3月在北京西三环交通带附近采集4个季节PM_(2.5)有效样品95组,利用热光反射法测定了PM_(2.5)中OC和EC的质量浓度,并对OC/EC值、OC与EC相关性、二次有机碳(SOC)等特征及污染来源进行了分析.结果表明,采样期间PM_(2.5)平均质量浓度为(109.9±7.99)μg·m~(-3). PM_(2.5)中OC的年平均质量浓度为(13.49±4.32)μg·m~(-3),占PM_(2.5)的13.13%; EC的年平均质量浓度为(5.41±1.83)μg·m~(-3),占PM_(2.5)的5.2%.OC和EC平均浓度及OC和EC在PM_(2.5)中所占比例的季节变化特征均为冬季最高,秋季大于春季,夏季最低.4个季节PM_(2.5)中OC/EC比值均大于2.0,表明各季节存在二次有机碳(SOC)的生成,采用OC/EC最小比值法对SOC含量进行了估算,SOC年平均浓度为(6.88±1.10)μg·m~(-3),占OC含量的50.86%,冬秋季节的SOC浓度水平高于春夏季节.夏季SOC对OC的贡献率为62.22%,高于其他季节.相关性分析表明,OC与EC的相关性在春季(R2=0.9046)和秋季(R2=0.8886)高于夏季(R2=0.4472)和冬季(R2=0.6018),表明春秋两季OC与EC来源相似且相对简单.进一步对PM_(2.5)中8个碳组分质量浓度进行分析显示,北京城区大气碳质气溶胶主要来自汽油车排放和燃煤.  相似文献   

9.
为探究宝鸡市秋季大气PM2.5中水溶性离子的污染特征及来源,于2019年10月15日至11月14日分别对宝鸡市监测站、文理学院和陈仓区环保局的3个站点进行PM2.5样品采集,通过离子色谱仪得到水溶性离子质量浓度,分析了3个站点水溶性离子在清洁时段和污染时段的变化特征及来源.结果表明,三站点PM2.5的质量浓度陈仓区环保局>文理学院>宝鸡市监测站.清洁时段和污染时段PM2.5平均质量浓度分别为40.0μg·m-3和100.1μg·m-3,水溶性离子平均质量浓度分别为(13.7±7.7)μg·m-3和(57.8±15.0)μg·m-3.污染时段NO3-/SO42-值是清洁时段的1.6—1.8倍.污染越重,SNA(NO3-、SO42-和NH4+)质量浓度越大,占总水溶性离子和P...  相似文献   

10.
为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM_(2.5)样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM_(2.5)中OC和EC的平均质量浓度分别是13.5±14μg·m~(-3)和6.5±6.1μg·m~(-3),其中OC浓度随季节变化顺序为冬季春季夏季秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM_(2.5)比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R~2=0.4054),而春季(R~2=0.7659)、秋季(R~2=0.8253)、冬季(R~2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9μg·m~(-3)、1.0±0.8μg·m~(-3)、 0.5±0.4μg·m~(-3)、 3.6±3.5μg·m~(-3),冬季SOC浓度最高. 8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.  相似文献   

11.
为研究嘉兴地区嘉善冬季污染时段和清洁时段PM2.5化学组分特征,结合气象数据对2019年1月嘉兴市嘉善县善西超级站在线自动监测PM2.5及化学组分数据、气态污染物(NO2和SO2)进行了分析.结果表明,2019年1月嘉善善西超级站污染时段PM2.5浓度(97.18μg·m-3)为清洁时段(36.77μg·m-3)的2.6倍.污染时段水溶性离子浓度(41.58μg·m-3)较清洁时段(19.82μg·m-3)高21.76μg·m-3,但占比有所降低,含碳组分比例增加.OC;EC比值为3.93,可能受到燃煤及机动车排放的共同影响.低风速及高湿有利于NO2和SO2等气态污染物进行二次转化,污染时段硫转化率和氮转化率均比清洁时段高,分别增高7.93%和54.11%,说明NOx向硝酸盐二次转化较为明显,导致颗粒物浓度升高.聚类分析结果显示67.34%气流来自北方,且相应的气流轨迹上污染物浓度比周边高,说明污染物存在一定的长距离输送.结合风玫瑰图可以看出,污染主要为本地及其周边的输送,污染物的长距离输送在短时会使污染浓度突增.因此,在重点关注本地及周边污染的同时,偏北气流下的污染物区域输送不可忽视.  相似文献   

12.
本文旨在分析哈尔滨市两城区(道里区和香坊区)2014年—2019年PM2.5中16种芳香烃质量浓度变化规律,明确芳香烃中主要的污染及来源.将颗粒物中的多环芳香烃收集于滤膜,滤膜用乙醚/正己烷的混合溶剂提取,提取液经过浓缩、净化后,用具有荧光及紫外检测器的高效液相色谱仪分离检测.通过空气污染人群健康检测系统选取与PM2.5监测期相同时期的平均气压、平均温度、平均相对湿度、降水量、日照小时数、平均风速等6种气象因素数据,采用Spearman法分析6种气象因素与16种多环芳香烃的相关性.结果表明,道里区PM2.5平均质量浓度为84.9μg·m-3,香坊区为86.5μg·m-3.两城区的PM2.5与平均气压呈显著正相关,与平均温度、平均相对湿度、降水量、日照小时数呈显著负相关.道里区和香坊区在2014—2019年多环芳香烃平均质量浓度分别为50.7 ng·m-3、59.5 ng·m-3.其贡献值由高到低为芘>荧蒽&...  相似文献   

13.
石河子市是位于新疆乌昌石区域中部的工业城市,2020年12月和2021年1月在石河子市城区和工业区共布设2个采样点,全天候采集细颗粒物(PM2.5)样品61 d,利用电感耦合等离子质谱仪(ICP-MS)对24种元素含量进行分析,并通过富集因子法(EF)解析PM2.5中无机元素的污染特征及来源.结果表明,冬季采样期间,石河子市重度及以上污染天数占整个采样期的53.2%,以PM2.5为首要污染物的污染天数占整个采样期的98.4%,采样期城区和工业区的PM2.5日均值分别为164.7μg·m-3和113.6μg·m-3,表明石河子市冬季PM2.5污染严重;采样期城区和工业区PM2.5中无机元素浓度分别为4.4μg·m-3和3.6μg·m-3,主要成分均为K、Ca、Na、Mg、Al、Fe,6种元素之和在城区和工业区元素中的占比分别为97.4%和97.5%,表明这6种元素为城区和...  相似文献   

14.
天津城区PM_(2.5)中碳组分污染特征分析   总被引:1,自引:0,他引:1  
为探讨天津城区碳组分的季节污染特征,于2009年4月—2010年1月采集大气PM2.5样品,测定其碳组分浓度,分析有机碳(OC)和元素碳(EC)的相互关系,并探讨气象条件对碳组分浓度的影响.结果表明,天津城区PM2.5质量浓度为141.47μg·m-3,OC和EC质量浓度年均值分别为18.81μg·m-3和6.86μg·m-3,分别占PM2.5质量浓度的13.3%和4.8%,碳组分系PM2.5的重要组成部分;季节分布特征显示,秋、冬季OC和EC污染较为严重,总碳气溶胶(TCA)分别为45.74μg·m-3和46.75μg·m-3,占PM2.5质量浓度的30.1%和40.1%;采用改进的OC/EC最小比值法计算得到的二次有机碳(SOC)浓度显示,秋季和冬季SOC较高,为7.45μg·m-3和7.28μg·m-3.后向轨迹的聚类分析表明,局地气流或偏南气流控制下的PM2.5中碳组分浓度较高.  相似文献   

15.
森林被誉为"地球之肺",在防霾治污方面有其独特不可替代的作用,不同树种沉降PM2.5的功能有很大差别.本文选取代表性城市森林——奥林匹克森林公园为研究对象,设置垂直监测塔观测大气PM2.5的浓度垂直分布,以考察不同季节城市森林对PM2.5中各组分的影响.在冬季、春季和夏季各采集PM2.5样品,分析并计算PM2.5中Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-和SO42-等典型水溶性无机离子的浓度.结果表明,PM2.5中水溶性无机离子总浓度呈规律性变化特征:冬季((56.90±27.38)μg·m-3)>春季((46.69±12.24)μg·m-3)>夏季((23.16±8.75)μg·m-3).其中SO42-和NO3-浓度和占PM2.5主要水溶性无机离子总浓度的50%以上.3个季节中,除冬季外,在春季和夏季,8种离子有明显的垂直方向上的沉降,夏季的沉降速率高于春季,但是春季由于大气颗粒物浓度高,沉降通量高于夏季.NO3-和SO42-垂直方向的沉降量在所有可溶性无机离子中最高.植被密度、叶面积指数、气象条件等因素对于PM2.5的沉降特征有明显影响.  相似文献   

16.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

17.
本研究于2018年12月3日—2019年1月1日在辽宁省西南典型城市葫芦岛市和朝阳市分别布设3个城区采样点,在区域传输点龙屯水库布设1个采样点,采集大气细颗粒物PM2.5样品(n=201)。使用离子色谱检测样品中的Na+、Mg2+、Ca2+、K+、NH4+、SO42-、F-、Cl-和 NO3-的质量浓度。观测期间PM2.5的平均浓度为葫芦岛市(54.25±26.14)μg·m-3>朝阳市(45.38±20.64)μg·m-3>区域背景点龙屯水库(33.73±21.64)μg·m-3。水溶性无机离子是PM2.5中的主要成分,朝阳市、葫芦岛市和龙屯水库中的水溶性离子分别占PM2.5质量浓度的49%,52%和49%。其中NH4+、NO3-、SO42-是PM2.5中最主要的水溶性离子.葫芦岛市和朝阳市的SOR(硫氧化率)、NOR(氮氧化率)值均大于0.1,说明两个城市存在明显的气溶胶二次转化过程。在不同污染状况下,朝阳市污染天中F-、NH4+、Cl-和K+均为清洁天的2.5倍左右,葫芦岛市污染天中NH4+、SO42-和NO3-均为清洁天的3倍左右。朝阳市和葫芦岛市污染天SOR分别为0.13和0.18,分别为清洁天的0.76倍和1.5倍;NOR值分别为0.17和0.23,分别是清洁天的1.13倍和1.91倍,除朝阳市SOR外,污染天的SOR和NOR均大于清洁天,表明污染天中SO2和NO2向SO42-和NO3-的二次转化增强。主成分分析结果表明,葫芦岛市和朝阳市PM2.5的主要污染源来自于二次转化和燃煤、生物质燃烧;龙屯水库的主要污染源来自于二次转化。后向轨迹说明气团主要由内蒙古、俄罗斯及蒙古国传输至辽宁省。  相似文献   

18.
本研究采集2015年9月至2016年8月石河子市不同类型天气下大气颗粒物样品,根据气象条件进行霾与沙尘分类,使用热光碳分析仪DRI 2001A进行有机碳(organic carbon,OC)与元素碳(elemental carbon,EC)测定,采用最小比值法估算二次有机碳(second organic carbon,SOC)质量浓度,主成分分析法(principle component analysis,PCA)分析其可能来源.结果表明:中霾天气下OC和EC平均质量浓度达到20.85±5.03、2.75±0.46μg·m~(-3)(沙尘天气18.9±4.4μg·m~(-3),2.6±0.9μg·m~(-3)).二次有机碳SOC在中霾天气下质量浓度为10.62±3.94μg·m~(-3)(沙尘天气9.3±3.7μg·m~(-3)),占OC浓度67%(沙尘天气67%).霾与沙尘天气OC与EC相关系数低于非霾非沙尘天气,表明霾与沙尘天气较非霾非沙尘天气有着复杂的污染源.PCA分析表明,霾与沙尘天气下的碳气溶胶的主要排放源为机动车尾气,固定燃煤源和道路扬尘.本项研究分析了石河子市霾和沙尘天气下的碳气溶胶分布,有望为中国西部城市的霾和沙尘天气治理提供依据.  相似文献   

19.
2017年1月—12月期间在四川省宜宾市布置4个点位,共采集360个PM_(2.5)样品膜,采用美国沙漠研究所DRI Model 2001型热光分析仪测定PM_(2.5)样品中OC、EC的浓度值,应用OC/EC比值法对SOC进行了估算.结果表明,宜宾市PM_(2.5)年均浓度为75.2μg·m~(-3).OC、EC年均浓度分别为14.3μg·m~(-3)和4.30μg·m~(-3),季节变化趋势为冬季秋季春季夏季,OC占PM_(2.5)比例为19.0%,为PM_(2.5)重要组成部分.SOC年均浓度为4.70μg·m~(-3),对OC贡献较大,在OC中占比为29.3%;SOC在OC中的占比春季冬季≈秋季夏季.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3、和OPC进行主成分分析,结果表明机动车尾气、燃煤排放和生物质燃烧是宜宾市PM_(2.5)中OC和EC的主要贡献源,可贡献PM_(2.5)中碳组分的54.0%—69.0%.  相似文献   

20.
为研究华北平原夏季PM2.5中有机气溶胶污染特征,于2015年6月20日至2015年7月30日对山东禹城生态站大气中PM_(2.5)进行了观测研究.结果表明,观测期间禹城大气PM_(2.5)日平均浓度为87.15±32.27μg·m~(-3),与我国《环境空气质量标准》(GB3095-2012)二级标准75μg·m~(-3)相比,超标率为58.53%.检测到的10种糖醇的平均总浓度为177.89±145.38 ng·m~(-3)(白天)和226.97±196.88 ng·m~(-3)(晚上),分别占WSOC的3.18%(白天)和4.97%(晚上).脱水糖(左旋葡聚糖、半乳聚糖和甘露聚糖)是检测到的糖类化合物中的主要组成部分,分别占总浓度的58.52%(白天)和75.61%(晚上).EC、OC、WSOC的平均质量浓度分别为2.68±2.8μg·m~(-3),7.51±4.4μg·m~(-3)、5.57±3.95μg·m~(-3),分别占PM_(2.5)质量浓度的3.08%、8.62%和7.34%.WSOC占OC的74.16%,表明有机碳中大部分是水溶性组分.利用EC示踪法和WSOC法估算的二次有机碳(SOC)的质量浓度分别为4.08±2.25μg·m~(-3)和4.90±3.11μg·m~(-3),且两种方法计算的SOC呈现很好的相关性(r=0.77,P0.001).估算得到的SOC为白天高于夜间,与白天光化学反应比较强烈、产生的二次有机物较多一致.相关性分析表明,OC、WSOC和SOC与相对湿度呈现显著的负相关,与SO_2表现出较强的正相关关系,与温度均没有表现出相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号