首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
北江作为清远市居民的主要生活饮用水水源,水体中持久性有机污染物污染问题备受重视,但目前对于北江清远段水体中酞酸酯的研究较少。了解OCPs的分布、来源及健康、生态风险,对于保障北江清远段居民的饮用水安全,给北江水生态环境保护管理提供技术支持具有重要参考意义。2016年7月和12月于北江清远段采集40个水和表层沉积物样品,采用高分辨气相色谱-高分辨质谱联用仪(HRGC-HRMS)法测定了样品中的有机氯农药(Organochlorine Pesticides,OCPs),分析了北江清远段水环境中OCPs的残留特征,并进行了健康和生态风险评估。结果表明,北江清远段水和沉积物中OCPs的残留较少,检出率低。丰枯两季水中仅有异狄氏剂(Endrin)和六氯苯(HCB)2种化合物被检出,丰水期水中ΣOCPs质量浓度为0.25-12 ng·L~(-1),枯水期水中ΣOCPs质量浓度为nd(表示未检出)-3.29 ng·L~(-1);沉积物中5种目标化合物:HCB、六六六(γ-HCH)、狄氏剂(Dieldrin)、滴滴伊(p,p’-DDE)、滴滴涕(o,p’-DDT)被检出,丰水期沉积物中∑OCPs质量分数为0.14-5.58ng·g~(-1),枯水期沉积物中∑OCPs质量分数为0.02-2.16ng·g~(-1)。OCPs的污染源解析结果表明,沉积物中DDT为历史残留导致,γ-HCH来源于杀虫剂林丹。致癌风险和非致癌风险评价结果表明,北江清远段水中OCPs对人体均未达到致癌风险。采用淡水沉积物环境质量基准法和效应区间中低值法评价沉积物中OCPs生态风险,发现丰水期BJ-1、BJ-4、BJ-6采样点对水生动物产生不良反应。  相似文献   

2.
本文以汾河流域作为研究对象,系统研究了水相及沉积物中6种邻苯二甲酸酯(PAEs)的含量、组成和空间分布,同时对汾河流域水体和沉积物中PAEs进行生态风险评价.研究表明,汾河流域丰水期水相中PAEs总量为2.79—206.33μg·L~(-1),平均浓度按DEHP(邻苯二甲酸(2-乙基己基)酯)DBP(邻苯二甲酸二丁酯)BBP(邻苯二甲酸丁基节基酯)DEP(邻苯二甲酸二乙酯)DMP(邻苯二甲酸二甲酯)DNOP(邻苯二甲酸二正辛酯)的顺序递减.其空间分布结果表现为,干流PAEs浓度低于支流,从上游到下游干流PAEs浓度呈现先升后降的趋势.依据国家地表水环境质量标准(GB3838—2002)对DBP、DEHP标准限值的规定,丰水期有60%的站点超过3μg·L~(-1)和8μg·L~(-1)的限值.丰水期沉积物中PAEs浓度范围为0.064—3.551μg·L~(-1),平均浓度按DEHPDBPDMPDEPBBP的顺序递减,干流PAEs高于支流,中下游PAEs含量高于上游,其中中游的太原段沉积相中PAEs污染相对严重.生态风险评价结果表明,汾河流域水相中PAEs的生态风险大小排序依次为DBPDEHPDEPDMP,DBP和DEHP在大部分采样点存在一定的潜在生态风险,DMP和DEP的生态风险在可接受范围;沉积物PAEs中所有种类的平均含量未超过风险评价的低值(ERL),对生物的潜在危害较小.  相似文献   

3.
地下水高砷暴露的健康危害是环境与健康领域面临的巨大挑战。水砷含量及暴露人群饮水量参数的季节性变化可能影响饮水砷暴露评估的准确性。本研究选择内蒙古饮水砷中毒病区为研究区,测定丰水期(2013年5月)和枯水期(2013年12月)居民饮用水和尿液各形态砷(三价无机砷iAs~(3+)、五价无机砷iAs~(5+)、一甲基砷MMA~(5+)和二甲基砷DMA~(5+)+)含量,研究砷暴露量和尿砷的季节变化。结果表明,丰水期水砷含量(134.4±25.8)μg·L~(-1)显著低于枯水期的(163.2±38.1)μg·L~(-1),且丰水期水中iAs~(3+)的含量(58.9±51.2)μg·L~(-1)也显著低于枯水期的(100.1±49.0)μg·L~(-1)。研究人群丰水期通过饮水的摄砷量为313.1μg·d~(-1),低于枯水期的378.6μg·d~(-1)。此外,丰水期居民尿液总砷含量(218.6μg·L~(-1))显著低于枯水期(283.1μg·L~(-1))。丰水期女性居民尿液iAs、MMA~(5+)和总砷含量随当季饮水iAs~(5+)含量的升高而显著降低,枯水期女性尿液MMA5+含量随当季饮水iAs~(3+)及iAs含量的升高而显著升高。可见,病区居民饮水砷暴露量与尿砷含量具有明显的季节差异性,饮水砷与尿砷的关系受饮水砷形态、季节变化及性别等因素影响。  相似文献   

4.
大辽河地表水中多环芳烃的污染水平及致癌风险评价   总被引:3,自引:0,他引:3  
随着经济发展,水环境污染不断加剧,地表水中多环芳烃(PAHs)的水平及其致癌风险直接关系到居民的身体健康。为分析大辽河地表水中多环芳烃的污染水平,对大辽河2011年丰水期和枯水期地表水中16种优先控制的PAHs浓度进行监测,应用以Bap为参照物使用等效质量浓度TEQ和终生致癌风险评价模型(ILCR)对地表水中多环芳烃对人体的风险进行评价。结果表明:与国内外其他河流相比较,大辽河地表水中ΣPAHs的污染较为严重,且丰水期浓度显著大于枯水期。在丰水期,地表水中多环芳烃以4环多环芳烃为主,代表性多环芳烃为Baa;在枯水期,地表水中多环芳烃以3环和4环多环芳烃为主,代表性多环芳烃为Phe。与美国EPA标准相比较,致癌风险评价结果表明大辽河地表水中存在潜在的多环芳烃致癌风险,即使经过水厂处理后这种风险仍然存在,必须给予重视。上述研究结果为明确大辽河地表水中多环芳烃污染现状、加强水环境管理提供了基础数据。  相似文献   

5.
在极低的环境暴露水平(ng·L~(-1)—μg·L~(-1)),环境内分泌干扰物(EEDs)就能对水生物的生殖、发育功能产生不利影响,甚至可能威胁到饮用水源的安全。为深入了解珠江水源水中EEDs的污染现状,采用全自动固相萃取-气相色谱/质谱联用(FASPE-GC/MS)法对珠江三角洲河流饮用水源地中EEDs的含量分布和季节变异进行了调查,并评价了其潜在的生态风险。结果发现,EEDs广泛存在于珠三角水源水中,总EEDs(ΣEEDs)的质量浓度在26.8—2 460 ng·L~(-1)之间,平均值和中值分别为775、325 ng·L~(-1);其中辛基酚(OP)、壬基酚(NP)、双酚A(BPA)和雌酮(E1)的质量浓度范围(平均值/中值)分别为LOQ (定量限)—121 ng·L~(-1)(42.9/15.2 ng·L~(-1))、15.2—2 270 ng·L~(-1)(821/338 ng·L~(-1))、1.19—177 ng·L~(-1)(56.21/52.0ng·L~(-1))、nd (未检出)—2.5 ng·L~(-1)(0.9 ng·L~(-1)/LOQ)。各水源地EEDs总体污染水平:东江东莞段流溪河下游西江北江,丰水期ΣEEDs的质量浓度显著高于枯水期(P0.05)。与国内外相关研究结果相比,珠三角河流水源水中EEDs的污染处于中高水平。丰水/枯水期水源水中OP、NP、BPA、E1的风险商(RQ)平均值分别为0.47/0.13、2.25/0.6、0.05/0.08、0.18/0.07,可见OP、BPA、E1在两季均呈中低风险水平,NP则呈中高风险水平。丰水期和枯水期饮用水源地EEDs的危害指数(HI)范围(平均值)分别为0.28—6.05(2.95)、0.045—3.23(0.88),表明丰水期的风险水平总体高于枯水期(P0.05)。两季高风险点(HI1)占总点位的41.7%,均出现在流溪河下游和东江东莞段,表明以上水源地处于高生态风险水平,已对当地水生生物及饮用水安全形成严重威胁;西江和北江的饮用水源地则处于中低风险水平。  相似文献   

6.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

7.
为调查骆马湖邻苯二甲酸酯(PAEs)分布特征,2016年4月,在骆马湖设置水质采样点22个,沉积物采样点6个,鱼样6个。利用气相色谱-质谱联用仪测定了骆马湖水体、沉积物、鱼体内11种邻苯二甲酸酯(PAEs)含量。结果显示,水体、沉积物、鱼体中检出2种邻苯二甲酸酯,为邻苯二甲酸二异丁酯(Di BP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)。湖水ρ(PAEs)为0.05~186.8μg·L~(-1)(平均值为52.94μg·L~(-1));沉积物w(PAEs)为786.5~1 138μg·kg~(-1)(平均值为952.4μg·kg~(-1)),是水体浓度的18.0倍;鱼体中w(PAEs)为1 078~1 996μg·kg~(-1)(平均值为1 533μg·kg~(-1)),是水体浓度的29.0倍,即PAEs的生物富集系数(BCF)均值为29.0。这表明邻苯二甲酸酯类污染物在沉积物和鱼体内富集性较强。与国内其他水源地相比,骆马湖PAEs污染水平较低。健康风险评价结果表明,骆马湖周边居民PAEs暴露量不会构成急性毒性。但是因PAEs具有蓄积性,长期的慢性毒性值得关注,儿童的暴露风险较高,应引起重视。  相似文献   

8.
本文研究了汉江水相和沉积物中10种药品和个人护理品(PPCPs)的浓度分布、组成特征和污染来源;分析了汉江水相和沉积物中PPCPs含量的时空变化;结果表明,10种PPCPs物质的检出频率不同.枯水期和丰水期水样中∑PPCPs浓度分别为37.47—275.83 ng·L~(-1)和72.02—292.96 ng·L~(-1),枯水期和丰水期沉积物样品中∑PPCPs浓度分别为24.71—85.12μg·kg~(-1)和3.35—171.84μg·kg~(-1).水样中总浓度最高点出现在集家嘴的丰水期,且酮基布洛芬(KTP)的检出浓度最高,达250.59 ng·L-1.沉积物中浓度最高点出现在丹江口的丰水期,且以酮基布洛芬(KTP)和三氯卡班(TCC)为主.所有沉积物样品中各组分占比以酮基布洛芬(KTP)为主.采用风险商(RQ)法对汉江水相和沉积物中的10种PPCPs进行生态风险评估,结果表明,主要是酮基布洛芬(KTP)、三氯生(TCS)和三氯卡班(TCC)对细菌类、藻类、无脊椎动物和鱼类有明显不同的生态风险.汉江流域PPCPs的生态风险需引起关注.  相似文献   

9.
长江中下游环境激素效应的污染特征及生态风险   总被引:3,自引:0,他引:3  
生活污水和养殖废水排放导致受纳水环境中激素类物质的污染,对水生生物产生不利影响。分别利用嵌入雌激素受体和雄激素受体的基因重组酵母菌测定了长江中下游流域不同时期水体和沉积物中4种环境激素效应,即雌激素效应、抗雌激素效应、雄激素效应和抗雄激素效应。结果表明,雌激素效应污染最为普遍,在地表水和沉积物中检出率均超过50%,水体和沉积物的最高浓度分别为2.05 ng·L~(-1)雌二醇当量(EEQ)和0.43 ng EEQ·g~(-1)。其他3种激素效应在水体和沉积物介质中的检出率均低于雌激素效应,按总体检出率来看:抗雄激素效应雄激素效应抗雌激素效应,3种激素效应在水体中最大检出浓度分别为144μg·L~(-1)氟他胺当量(FEQ)、37.9 ng·L~(-1)二氢睾酮当量(DEQ)和103μg·L~(-1)他莫西芬当量(TEQ),在沉积物中分别为53.6μg FEQ·g~(-1)、12.0 ng DEQ·g-1和51.5μg TEQ·g~(-1)。环境激素效应的浓度分布在水体中均呈现季节性的差异,雌激素效应的区域性高值位于武汉段、鄱阳湖口和芜湖-南京段,其他3种激素效应没有明显的高污染区域。环境激素效应与当地人口数量、有机质、氨氮等呈现一定相关性,表明环境激素效应与人类活动排放密切相关。雌激素效应仅在鄱阳湖口点位具有高风险,其他区域为中等风险,雄激素效应无高风险区域。研究结果有助于认识长江中下游区域的环境激素效应污染态势,为相关污染控制提供基础数据。  相似文献   

10.
对河北某典型废旧塑料处置地土壤中邻苯二甲酸酯污染水平及分布特征进行了研究.结果表明,废旧塑料处置地土壤中∑_(16)PAEs含量0.517—30.1μg·g~(-1),平均为6.98μg·g~(-1),与电子垃圾处理地土壤PAEs含量处于同一个数量级,高出一般土壤1—2个数量级.邻苯二甲酸二(2-乙基)己酯(DEHP),邻苯二甲酸二异丁酯(DIBP)和邻苯二甲酸二丁酯(DBP)为PAEs污染的主要同系物,其中DEHP对总量贡献率最大,平均为68.8%.废旧塑料回收利用过程中的污染排放是该研究区土壤中PAEs的主要来源.对美国EPA和欧盟优先控制的6种PAEs(邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸丁基苄基酯、邻苯二甲酸二(2-乙基)己酯、邻苯二甲酸二正辛酯)同系物进行了风险评价,结果表明成人和儿童对DEHP暴露的致癌风险超出了可接受水平.废旧塑料处置地土壤的PAEs污染应引起高度重视.  相似文献   

11.
利用气相色谱-质谱(GC-MS)检测了大辽河表层水中邻苯二甲酸酯类(PAEs)有机污染物的浓度水平,分析其分布特征,并对PAEs类有机污染物的环境健康风险进行了评价。结果表明,大辽河表层水中共检出4种PAEs,其质量浓度范围为n.d.#0.754μg·L~(-1)。4种PAEs类中质量浓度平均值最高的为邻苯二甲酸二异辛酯(DIOP)(0.36μg·L~(-1)),最低的为邻苯二甲酸二甲酯(DMP)(0.01μg·L~(-1))。4种PAEs浓度贡献大小依次为:邻苯二甲酸二异辛酯(DIOP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二甲酯(DMP)。DBP浓度基本符合国家地表水环境质量标准(GB3838—2002)。与国内其他水域相比,大辽河表层水中PAEs的污染程度处于较低水平。DMP和DEP的最高值均出现在营口市区最主要的工业和生活污水排污口之一——纱厂潮沟采样点,DBP和DIOP的最高值则分别出现在牛庄大桥和港监潮沟采样点。总PAEs类有机污染物分布趋势为:在工业分布较多的区域及主城区附近水域PAEs浓度较高,大辽河上游区域PAEs浓度相对较低。利用US EPA健康风险评估模型粗略估算,大辽河表层水中PAEs类污染物的非致癌风险指数值低于1。  相似文献   

12.
邻苯二甲酸酯类(PAEs)作为一类重要的环境激素类化学物质,被广泛应用于塑料的增塑剂中。随着工业的发展,中国PAEs的需求量迅速增加,PAEs已成为中国城市水环境的重要风险因子,因此需要对其进行生态风险评价。本研究首先针对我国典型城市水环境中PAEs的污染现状进行文献综述,总结归纳得到我国典型城市水环境中PAEs的污染分布特征;其次运用熵值法计算了我国典型水环境中PAEs对于藻类、水蚤和鱼类种群的生态风险,并依据生态风险等级划分标准将PAEs生态风险划分为4个水平。文献综述结果表明我国城市水环境中的PAEs浓度多数都高于8.00μg·L~(-1),超过了我国地表水环境质量标准(PRC-NS 2002)和饮用水质量标准(PRC-NS 2006)中的规定限值,且在大城市或PAEs工业区周围的污染水平要显著高于其他区域。将我国与国外典型城市水环境中PAEs的污染水平进行比较,结果表明我国水环境中的PAEs污染水平明显高于其他国家。此外,我国城市水环境中PAEs的污染不仅出现在地表水环境中,而且在广东东莞等地的地下水环境中也出现了PAEs污染,PAEs浓度范围为0.0~6.7μg·L~(-1)。生态风险评价的结果表明,邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二异辛酯(DEHP)和邻苯二甲酸丁苄酯(BBP)是我国城市水环境中最主要的风险因子。PAEs污染分布特征和生态风险评价的结果表明我国城市水环境中的PAEs生态风险值总体处于10≤风险熵(RQ)100到RQ≥100水平,尤其是在大城市或者PAEs工业密集区域,因此,亟需对我国城市水环境中PAEs的生态风险进行早期预警和风险管理。  相似文献   

13.
北江流域抗生素污染水平和来源初探   总被引:1,自引:0,他引:1  
北江是发源于湖南(武水)和江西(浈水),汇于广东韶关,流经广东全境并入海的三大河流之一。为了解整个北江抗生素污染情况,共设置44个采样点,并采集了河水及部分沉积物样品,较全面地分析了各样品中12种典型抗生素含量并初步探究了其污染来源。研究发现,包括北江源头在内的全河段均有抗生素的检出,5类抗生素在表层水和沉积物中的平均浓度分别为77.8 ng·L~(-1)和3.6 ng·g~(-1)。其中,大环内酯类污染最为严重,其含量范围为11.7~114.6 ng·L~(-1)和0~435.3 ng·g~(-1),远高于其他类抗生素。表层水中磺胺类的磺胺甲恶唑和氯霉素类的检出率达100%,其中以磺胺甲恶唑(14.7 ng·L~(-1))和阿奇霉素(25.0 ng·L~(-1))为主,而沉积物中以阿奇霉素(35.9 ng·g~(-1))、氧氟沙星(5.4 ng·g~(-1))和四环素(3.3 ng·g~(-1))为主。由于流域污染源种类和数量不同,各抗生素在北江中的分布也存在差异。表层水中抗生素含量水平表现为下游高于上中游,在沉积物中则主要集中于中、下游之间河段。这反映了人类活动强度对北江抗生素污染的直接影响。  相似文献   

14.
拉鲁湿地是世界海拔最高、面积最大的城市天然湿地,为研究其沉积物污染的变化规律,于2018年12月(枯水期)和2019年5月(丰水期)分别采集了拉鲁湿地中59和48个点位的沉积物,分析总氮(TN)、总磷(TP)和总有机物(OM)的空间分布特征及其化学计量比,并运用综合污染指数法和有机污染指数法对其进行污染风险评价。结果表明,枯水期拉鲁湿地TN、TP和OM含量总体高于丰水期。枯水期沉积物TN、TP和OM含量分别为0.18~6.35、0.33~2.88和27.18~268.98 g·kg~(-1);TN和OM含量高的区域主要出现在拉鲁湿地的中西部和东部,而TP含量高的区域主要在西部和中西部。枯水期沉积物碳氮比(C/N)为15.04~85.31,北部显著高于其他区域(P0.05);丰水期沉积物C/N比为3.09~97.46,西部显著低于其他区域(P0.05)。枯水期和丰水期沉积物C/N比10,说明沉积物中有机质都是以外源为主,且丰水期沉积物具有矿化作用。拉鲁湿地北部没有有机污染,其他区域均存在不同程度的污染。  相似文献   

15.
为了解江苏省不同地区自来水中邻苯二甲酸酯(phthalate esters,PAEs)污染特征与风险水平,采用固相萃取-超高效液相色谱-三重四极杆质谱联用(SPE-UPLC-MS/MS)定性定量分析法,对江苏省沿江8市40户居民自来水中6种优控PAEs进行检测,分析了PAEs的污染水平,并开展人体健康风险评估.结果表明,PAEs在40份水样中均有检出,∑PAEs检出范围为4.10—14.23μg·L-1,平均值为(8.43±2.76)μg·L-1.DBP和DMP是自来水中PAEs的主要组成成分,约占∑PAEs总浓度的50%,其中DBP检出率为100%.与全球其他国家和地区相比,江苏省居民自来水中PAEs浓度处于中等偏上水平.加热煮沸过程可以降低自来水中PAEs浓度,但程度有限.健康风险评估结果显示,研究区域内DEHP的致癌风险指数均小于最大可接受风险水平(1×10-6),∑AEs的非致癌风险指数处于8.18×10-3—1.92×10-2,远小于1.江苏省沿江8市居民自来水已受到...  相似文献   

16.
本文以甘肃某县为代表,对区域内冬、夏两季窖水的常规指标、17种全氟化合物和15种邻苯二甲酸酯类进行了检测,对污染来源进行了探讨,并评估了两类新污染物的健康风险.结果表明:该县窖水pH普遍偏高,夏季雨期窖水浊度显著高于冬季.新污染的检测中,共检出13种邻苯二甲酸酯类(PAEs)和14种全氟化合物(PFCs).冬季窖水中PAEs总浓度范围为2.65—3.71μg·L-1,总浓度平均值3.12μg·L-1.夏季窖水中PAEs总浓度范围为1.85—9.26μg·L-1,总浓度平均值为4.56μg·L-1.两季窖水中,邻苯二甲酸二丁酯和邻苯二甲酸二异丁酯是含量最高的成分,两种物质分别占窖水PAEs总浓度的47.8%和48.5%,窖水中PAEs没有致癌和非致癌风险.冬季窖水中PFCs的总浓度为143.93—246.47 ng·L-1,夏季为275.90—405.51 ng·L-1.检测出的PFCs包括全氟羧酸(PFCAs)和全氟磺酸(PFSAs)两大类,PFCAs占窖...  相似文献   

17.
地下水受到污染会对人体健康产生危害,而垃圾填埋场产生的渗漏液对地下水具有污染风险,研究垃圾填埋场周边地下水的污染情况具有实际意义。以阜新市生活垃圾填埋场周边地下水为研究对象,在该区域设置6个采样点,于2018-2019年按不同季节对地下水样品进行了采集,分析地下水中Fe、Mn、Cu、As、Cr、NH_3-N、F、NO_2-N和NO_3-N的含量,应用US EPA推荐的健康风险评价模型和RBCA健康风险评价模型对地下水中各因子进行了评价。结果表明,除枯水期存在个别采样点完全达标外,其他季节各采样点均存在检测因子超标的情况(以Ⅲ类水质标准为依据),在枯水期,2和5号采样点达到Ⅳ类水质标准,1号采样点为Ⅴ类水质标准,在平水期和丰水期时所有采样点均达到了Ⅳ或Ⅴ类水质,研究区域水质较差。两种评价模型下,该区域地下水中总致癌风险(Cr、As)在不同时期、不同采样点均超过了最大可接受的风险水平10~(-6),最大值分别为4.96×10~(-4)和5.77×10~(-4),可能会对当地居民构成致癌风险。地下水中总非致癌危害商(Fe、Mn、Cu、NH_3-N、F、NO_2-N、NO_3-N)同样超过了最大可接受的程度,最大值分别为7.13和6.37,可能造成非致癌风险。US EPA和RBCA两种模型的评价结果变化趋势相同,总致癌风险在枯水期时达到最大,总非致癌危害在丰水期时有最大值。  相似文献   

18.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中普遍存在的稠环类化合物,由于其对人体健康和生态环境产生较大危害,美国环保局将16种PAHs列为优先控制的污染物。PAHs也是太湖流域的主要污染物之一。作为华东地区的重要水系和水源地,研究太湖环境质量的变化对改善太湖流域水生生态系统和提高沿岸居民身体健康具有重要意义。论文研究了太湖胥口湾水域表层水和沉积物的PAHs。结果显示,表层水和沉积物的PAHs总浓度分别为7.2~83 ng·L~(-1)和66~620ng·g~(-1)干重;年均值为29 ng·L~(-1)和218 ng·g~(-1)干重;年均毒性当量浓度为2.4 ng·L~(-1)和28 ng·g~(-1)干重。沉积物中的主要污染物为荧蒽、芘和,影响毒性当量浓度的主要是苯并(a)芘和二苯并(a,h)蒽。4环PAHs在沉积物中占主要,其浓度百分比为44%~48%,而5环PAHs则占毒性当量总浓度的90%以上,说明其危害主要来自5环PAHs。PAHs特征化合物比值分析表明,胥口湾沉积物中PAHs主要来源于煤和木材燃烧,表层水大部分为燃烧和石油的混合来源。污染水平的时空变化特点为丰水期(8月)表层水PAHs浓度偏高,沉积物偏低。湖区和湖岸的PAHs浓度只在丰水期有显著差异,表层水PAHs浓度湖区高于湖岸,沉积物相反;其他时期湖区和湖岸PAHs浓度无显著差异。根据加拿大沉积物环境质量标准,胥口湾整体生态风险水平较低。从时空分布特征来看,个别生态风险较高的点主要分布在湖岸,5月平水期可能是沉积物中PAHs生态风险较高的频发期。  相似文献   

19.
为了解东江淡水河流域重金属污染状况,测定地表水和沉积物中7种典型重金属锰、锌、铜、镍、铬、铅和汞(Mn、Zn、Cu、Ni、Cr、Pb、Hg)的含量水平,并采用地累积指数法和潜在生态危害指数法,评价沉积物环境质量状况.结果表明,淡水河地表水中Mn、Zn、Cu、Ni、Cr、Pb和Hg的平均值浓度分别为305.00、151.50、67.50、56.50、28.50、15.00、0.07μg·L-1;淡水河流域地表水重金属含量处于较低水平,且大部分重金属枯水期浓度高于丰水期.沉积物中Mn、Zn、Cu、Ni、Cr、Pb和Hg的平均值浓度分别为714.00、993.50、289.50、188.50、301.50、118.50、0.43 mg·kg-1.表层沉积物中Cu和Hg是污染最为严重的金属,Mn和Cr的污染水平相对较低,除Cu枯水期浓度明显高于丰水期外,其它6种重金属丰水期和枯水期差异较小.淡水河地表水和沉积物重金属平均含量整体高于西枝江和东江,且上游污染程度较高.相关性分析和主成分分析结果表明Zn、Ni、Cr、Mn和Pb的污染来源于流域内盛行的电子电镀产业,Hg和Cu的污染来自于其它产业.潜在生态风险结果表明,淡水河中游具有极强的生态危害,西枝江具有轻微的生态危害,东江有强的生态危害,但数值处于强的生态危害范围的下限.淡水河上中游及其支流周边工业聚集区是重金属污染的最主要来源.  相似文献   

20.
为了研究太湖流域重金属含量分布特征及污染现状,采用ICP-MS和直接汞分析仪对2012年11月至2013年8月期间太湖流域98个点位水体和沉积物中Cr、Cu、Zn、As、Cd、Pb和Hg进行监测。结果表明:水体中ρ(Cr)、ρ(Cu)、ρ(Zn)、ρ(Cd)、ρ(Pb)、ρ(As)和ρ(Hg)年平均值分别为0.88、3.21、10.96、3.29、0.019、0.07和0.021μg·L~(-1),均没有超过GB 3838—2002《地表水环境质量标准》,而沉积物中w(Cr)、w(Cu)、w(Zn)、w(Cd)和w(Pb)年平均值分别为102.32、65.24、185.64、0.93、45.88 mg·kg~(-1),这5种重金属含量均超过GB 15618—2008《土壤环境质量标准》,其中Cd含量为标准值的4.7倍。而w(As)和w(Hg)年平均值为9.87和0.107 mg·kg~(-1),只有标准值的65.8%和71.3%。水体和沉积物中重金属含量的时空分布存在显著差异。平水期水体Cr和Cu浓度高于枯水期和丰水期,丰水期Zn和As浓度最大,Cd、Pb和Hg浓度在枯水期、平水期、丰水期稳定,无显著变化。Cr、Cu、Zn、As、Cd、Hg这6种重金属浓度在运河水系中最高,苕溪水体中最低,太湖水体中处于中等值,平水期沉积物中Cr和Cu浓度高于枯水期和丰水期。沉积物中Zn、Cd和Hg含量则以丰水期为最高,枯水期最低;As和Hg含量以枯水期为最高。运河水系和出湖水系沉积物中Cr、Cu和Pb含量明显超出标准值,而其他水系低于或者接近标准值。沉积物中Zn含量最高的为出湖水系和运河水系,而Cd含量最高的为宜溧河水系和太湖。太湖流域沉积物中7种重金属的潜在生态风险因子从大到小依次为Cd、Hg、Cu、As、Pb、Cr和Zn。Cd是最主要的生态风险贡献因子,其生态危害程度为强水平。宜溧河水系生态风险指数为278.13,属于重生态危害,而其他水系处于中等生态危害水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号