首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
为了研究水分条件如何左右生物质炭添加对湿地土壤微生物群落结构的影响,通过对室内培养240和720 d的添加生物质炭的土壤进行采样,分析了75%田间持水量、干湿交替和淹水3种水分条件下添加芦苇秸秆生物质炭(裂解温度分别为350和600℃)的湿地土壤微生物磷脂脂肪酸(PLFAs)量。结果表明,除75%田间持水量条件下培养240 d,生物质炭添加提高土壤微生物PLFAs总量和各类群微生物PLFAs量以外,75%田间持水量条件下培养720 d以及干湿交替和淹水条件下培养240和720 d,生物质炭添加均降低土壤微生物PLFAs总量和各类群PLFAs量,其中,干湿交替条件下土壤微生物PLFAs量下降幅度最大;培养240 d后添加裂解温度为350℃生物质炭的土壤微生物PLFAs总量及各类群微生物PLFAs量总体上高于添加裂解温度为600℃生物质炭的土壤。不同于未添加生物质炭的土壤,除75%田间持水量条件下的土壤放线菌以外,培养240 d后添加生物质炭的土壤微生物PLFAs总量和土壤其他类群微生物PLFAs量均高于培养720 d;除革兰阴性菌(G~-)外,总体上添加生物质炭的土壤微生物PLFAs量在干湿交替条件下最低,而在淹水条件下最高。75%田间持水量条件下,生物质炭添加提高土壤微生物丰富度指数(H)和均匀度指数(J),降低了优势度指数(D),而淹水条件下,培养240 d后生物质炭添加降低H和J指数,提高D指数,但干湿交替条件下生物质炭添加对土壤微生物多样性指数的影响没有明显规律性。冗余分析(RDA)和相关性分析结果表明,速效磷含量、硝态氮含量和pH与土壤微生物群落结构存在显著相关性,且相同水分条件下土壤微生物群落结构更为相似。研究认为添加生物质炭可通过自身性质和改变土壤理化性质来影响土壤微生物群落结构,而土壤水分条件和培养时间是左右生物质炭添加对微生物群落结构影响的重要因子。生物质炭添加仅促进75%田间持水量条件下培养240 d的土壤微生物生长,其他处理下生物质炭添加抑制大多数类群微生物生长或无影响。  相似文献   

2.
秸秆生物质炭土地利用的环境效益研究   总被引:12,自引:0,他引:12  
花莉  张成  马宏瑞  余旺 《生态环境》2010,19(10):2489-2492
农田土壤有机碳矿化释放CO2是农业温室气体排放的重要途径,促进土壤碳截获对于减缓全球温室效应具有重要意义。生物质炭具有改良土壤性质、促进土壤团聚体的形成、对土壤微生物生态具有调控作用等特性。因此,生物质炭对增强土壤碳截获能力及减少土壤CO2气体排放可能具有重要作用。采用实验室盆栽的方式,以黑麦草为目标植物,对农业秸秆生物质炭土地利用的环境效益进行了研究。实验结果表明:农业秸秆制生物质炭应用于农田土壤能产生多方面的环境效益。与对照相比,添加1%~4%生物质炭处理的土壤活性有机质质量分数均增加了25%以上,土壤呼吸度降低了23%~50%,同时,添加生物质炭对植物的生长也有促进作用。添加4%秸秆炭的处理的黑麦草生物量增加了68%。此外,秸秆生物质炭的添加对土壤中的养分具有较好的持留功能,与比照相比,添加生物质炭处理的土壤淋出液中氮和磷质量浓度显著降低,说明生物质炭能够有效减少水冲刷造成的氮磷流失,降低农业面源污染。  相似文献   

3.
生物炭-锰氧化物复合材料对红壤吸附铜特性的影响   总被引:5,自引:0,他引:5  
锰氧化物作为改性材料应用于制造复合材料一直是环境领域的研究热点,锰氧化物改性的复合材料在水处理、空气清新剂等领域应用广泛。但目前,将生物炭-锰氧化物复合材料作为吸附材料改变土壤对铜吸持能力的研究还不多见。采用等温平衡吸附法,测定生物炭-锰氧化物复合材料对红壤吸附铜的能力影响,并应用Freundlich方程Cs=KfCen分析红壤对铜的吸附特征。结果表明:不同用量的生物炭-锰氧化物复合材料加入后,均会明显提高红壤对铜的吸附量。添加0.5%、1.0%、2.0%和4.0%生物炭-锰氧化物复合材料的红壤处理,其铜的吸附量较未添加处理分别增加了63.1%、130%,310%和509%。Freundlich吸附方程能较好的描述不同用量生物炭-锰氧化物复合材料影响红壤对铜的吸附特征。添加0.5%、1.0%、2.0%和4.0%炭-锰材料处理的分配系数(Kf值)分别为0.176、0.286、0.653和0.800。生物炭-锰氧化物复合材料用量为4.0%时,分配系数(Kf值)较对照红壤提高了5倍,生物炭-锰氧化物复合材料加入红壤后对红壤pH值影响不大,对CEC(阳离子交换量)有较大的影响;生物炭-锰氧化物复合材料用量为4.0%时,CEC为5.59 cmol·kg-1,较对照增加了14.1%,温度升高,有利于提高红壤对铜的吸附能力。生物炭-锰氧化物复合材料加入红壤后,红壤在1034.63、537.22、471.45 cm-1处有吸收峰出现,红壤表面-OH、Mg-O、Si-O等活性官能团数量明显增加。生物炭-锰氧化物复合材料增加红壤对铜的吸附机制可能是红壤表面Mg-O、Si-O等官能团与铜形成了Mg-O-Cu-、Si-O-Cu-络合物,提高了红壤对铜的吸持能力。从土壤化学与土壤修复的角度出发,生物炭-锰氧化物复合材料可用于铜污染红壤修复。  相似文献   

4.
添加农作物秸秆炭对红壤吸附Cu(Ⅱ)的影响   总被引:17,自引:0,他引:17  
为考察秸秆生物质炭在重金属污染红壤修复中的作用,用一次平衡法研究了由花生秸秆、大豆秸秆、稻草和油菜秸秆制备的4种生物质炭对采自江西和广西的2种红壤吸附Cu(Ⅱ)的影响及其机制。结果表明,添加由农作物秸秆制备的生物质炭提高了红壤对Cu(Ⅱ)的吸附量,生物质炭对Cu(Ⅱ)吸附的促进作用随生物质炭添加量的增加而增加,低pH值条件下促进作用更明显。pH值4.0和w为2%生物质炭添加水平下,油菜秸秆炭、花生秸秆炭、大豆秸秆炭和稻草炭使江西红壤对Cu(Ⅱ)的吸附量较对照分别增加97%、79%、51%和54%;花生秸秆炭和大豆秸秆炭使广西红壤对Cu(Ⅱ)的吸附量较对照分别增加61%和44%,当生物质炭添加水平w达4%时,Cu(Ⅱ)吸附量的增幅达97%和165%。生物质炭表面带负电荷,可以同时增加红壤对Cu(Ⅱ)的静电吸附量和专性吸附量,但以增加专性吸附为主。因此,添加秸秆生物质炭可以有效降低Cu(Ⅱ)在酸性红壤中的活动性和生物有效性。  相似文献   

5.
全斌  陈健飞  郭成达 《生态环境》2001,10(2):115-120
释放80%的有效水时赤红壤旱地的t值(当释放的土壤有效水占有效水库容的比率为80%时的土壤水吸力值)较小,表明赤红壤旱地持水性较红壤旱地更差,植物更容易受到干旱的协迫。赤红壤旱地贮水库容比红壤旱地小,赤红壤旱地的比水容量达到10-2数量级(难效水)在-10kPa~-30kPa就开始出现,而红壤旱地出现在-30kPa以下,表明赤红壤旱地的失水速度快,保水供水性能弱于红壤旱地。最后,讨论了影响旱地土壤水分性质的因素。  相似文献   

6.
生物质炭对土霉素胁迫下小白菜种子萌发的影响   总被引:1,自引:0,他引:1  
采用土培模拟污染实验,将甘蔗渣炭、菠萝渣炭和木薯渣炭分别以0%、0.1%、0.5%和1.0%的炭土比添加到砖红壤中,研究土霉素胁迫下小白菜种子萌发效应。结果表明:(1)生物质炭促进种子萌发;土霉素在0~300 mg·kg~(-1)胁迫下种子发芽率未受明显影响,300~500 mg·kg~(-1)时受轻微抑制。(2)土霉素为0~100 mg·kg~(-1)时对种子根及芽伸长呈促进作用,促进率最高达33.05%。100~500 mg·kg~(-1)呈抑制效应,最大抑制率63.98%;种子对土霉素的敏感顺序依次为:根伸长>芽伸长>发芽率。(3)在土霉素胁迫下炭土比与种子根伸长呈显著正相关。3种生物质炭对小白菜种子根及芽伸长的促进效果呈:木薯渣炭>菠萝渣炭>甘蔗渣炭。(4)生物质炭和低浓度土霉素共同促进小白菜萌发,对高浓度土霉素毒性有缓解作用。  相似文献   

7.
为明确秸秆生物质炭对酸化茶园土壤改良及温室气体排放的影响,采用室内培养试验方法,研究了小麦秸秆生物质炭添加(对照CK:0 g·kg~(-1);低生物质炭B1:8 g·kg~(-1);中生物质炭B2:24 g·kg~(-1);高生物质炭B3:48 g·kg~(-1))对茶园土壤pH值和温室气体排放的影响。结果表明,与对照组CK相比,添加生物质炭显著抑制了酸性茶园土壤N2O的排放(P=0.000),但抑制效应并未随生物质炭添加量的增加而加强,培养期间各处理N2O累积排放量分别为:CK 2.366 mg·kg~(-1),B1 0.444mg·kg~(-1),B2 0.142 mg·kg~(-1),B3 0.207 mg·kg~(-1)。低生物质炭(8 g·kg~(-1))和中生物质炭(24 g·kg~(-1))处理的综合增温潜势(GWP)分别比对照组CK降低了33.45%和25.77%,而高生物质炭处理(48 g·kg~(-1))与对照处理差异不显著。这表明施用中低量生物质炭更有利于茶园土壤的固碳减排。此外,生物质炭显著提高了酸化茶园土壤p H值,生物质炭添加比例越大,p H值越高,故施用作物秸秆生物质炭有利于酸化土壤改良。相关性分析结果表明,土壤N_2O排放与pH值之间呈显著负相关关系,土壤p H值的升高可能是引起N_2O排放量降低的重要原因。  相似文献   

8.
根据室内测定资料,对雷州半岛桉林地砖红壤水分性能进行了探讨。结果表明,与自然植被下的砂页岩赤红壤比较,浅海沉积物桉林-砖红壤导水性、持水能力及供水能力均较低。在同样的吸力下,土壤持水量较少,在同样的吸力段,土壤释放的水量较少;玄武岩桉林-砖红壤持水能力较高,但导水性和供水能力较低。通径分析结果表明,浅海沉积物桉林-砖红壤持水能力较低主要受粘粒较少影响,其水分的有效性较低主要与其有机质的较少有较大关系;玄武岩桉林-砖红壤持水能力较高而水分的有效性较低,主要受其粘粒含量较高、有机质含量较低的制约。  相似文献   

9.
生物质炭输入对土壤碳排放的激发效应研究进展   总被引:1,自引:0,他引:1  
生物质炭因其特殊结构分解缓慢而长期固存在土壤中,在稳定有机碳库、增加碳库容量、保持土壤肥力、改变土壤质地方面具有重要作用。同时,随着生物质炭输入土壤团聚体结构、水分渗透性、养分吸附和微生物活性也发生改变,引起原位土壤有机碳周转改变的激发效应。文章综述了生物质炭输入对土壤环境、碳排放、生物质炭自身碳矿化的影响,对生物质炭-土壤互作产生的激发效应持久性、大小、方向和机制进行总结,即生物质炭输入后的正激发效应可能表现为生物质炭中可溶组分与微生物共代谢而促进生物质炭自身碳矿化;生物质炭添加引起的负激发效应可能表现为生物质炭诱发原位土壤有机碳更加稳定或生物质炭中易挥发有机物抑制原位土壤微生物活性而降低土壤碳排放。并根据目前的研究现状,就生物质炭输入量、与土壤微生物群落和植物的相互作用、生物质炭添加的风险预测和评估及开展长期研究的必要性等问题进行展望,以期为生态系统长期碳吸存研究奠定基础,为应对气候变化提供选择和参考。  相似文献   

10.
小麦秸秆生物质炭对水稻产量及晚稻氮素利用率的影响   总被引:32,自引:0,他引:32  
选择湖南长沙红黄泥水稻土和江西进贤红壤性水稻土为供试土壤,研究小麦秸秆制生物质炭在20、40t.hm-2施入量水平下与氮肥配施对早、晚稻产量及晚稻氮素利用率的影响。结果表明,生物质炭与氮肥配施情况下,2个试验点不同生物质炭施用量处理间早稻产量均无显著差异,但进贤试验点生物质炭施用量为20和40t.hm-2处理晚稻产量分别比未施生物质炭对照提高5.18%和7.95%,而长沙试验点3个处理间晚稻产量无显著差异。在相同氮素水平下,当生物质炭施用量为40 t.hm-2时,2个试验点土壤有机碳含量与未施生物质炭对照相比最高增幅均在55%以上;施用生物质炭可提高酸性或弱酸性土壤pH值,降低土壤容重;施用生物质炭也可显著提高水稻氮肥利用率,在40 t.hm-2施用水平下,长沙和进贤试验点水稻氮肥吸收利用率分别提高20.33和17.58百分点,进贤试验点氮肥农学效率提高39.81%。在酸性土壤中施用生物质炭可提高氮肥利用率,保持水稻产量稳定或有一定的增产效果。  相似文献   

11.
为探讨生物炭对土壤磷素转化的影响,选择华南地区两种典型土壤(高磷水稻土和低磷赤红壤),通过土壤培养试验,研究添加不同剂量(0%、1%、2%和4%,分别用CK、T1、T2、T4表示)秸秆生物炭对土壤磷素有效性及不同磷组分随时间变化的动态影响.结果表明,不同剂量秸秆生物炭处理均能显著提高水稻土和赤红壤的全磷及有效磷含量,且增加幅度随生物炭添加剂量的增加而升高,培养第40天T4处理的水稻土及赤红壤的有效磷含量相比对照分别增加118.45%和6432.08%,赤红壤效果更为明显.不同剂量秸秆生物炭处理均能显著增加两种土壤的Fe-P和Ca-P含量,其中T4处理效果最为显著.培养第40天T4处理的水稻土中水溶性磷、Al-P、Fe-P、Ca-P含量较对照分别增加233.53%、14.95%、8.82%和55.65%,O-P含量则降低2.74%;赤红壤的Al-P、Fe-P、Ca-P含量分别增加71.35%、80.15%和124.73%,水溶性磷和O-P含量则降低7.14%和0.52%.随着培养时间推移,秸秆生物炭处理的水稻土和赤红壤酸性磷酸酶活性逐渐降低,碱性磷酸酶活性则逐渐升高.此外,培养初期添加秸秆生物炭显著降低了两种土壤的微生物量磷含量,但该抑制作用随时间推移逐渐减弱直至消失.综上所述,秸秆生物炭处理显著影响水稻土和赤红壤磷素的化学形态、微生物活性及磷素转化,增加磷素有效性,尤其对赤红壤作用效果更为明显,因此在化肥减施增效中值得进一步推广应用.(图7表3参50)  相似文献   

12.
生物炭施入土壤的固碳潜力已引起了世界范围的关注,研究生物炭对土壤碳矿化的影响机制对深入理解土壤-生物炭的固碳机理有重要科学意义。选取我国红壤丘陵区广泛分布的典型树种马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)为原料制备生物炭,在控制培养条件下,生物炭按照1%、2%和5%的质量比加入土壤,研究生物炭对该区典型瘠薄土壤碳矿化的影响。培养过程中定期测定CO_2碳释放量(CO_2-C),培养结束后测定土壤微生物生物量、p H等性质。结果表明,生物炭促进了CO_2-C累积释放量,其中5%的生物炭效果最明显。采用First-order模型拟合相对碳总量(生物炭碳+土壤碳)的CO_2-C累积释放量,结果表明,该值随着生物炭施用量增加而降低,最高值出现在无生物炭的土壤对照处理。当施用量为5%时,生物炭可显著促进土壤碳总量释放;但施用量为2%时,生物炭对土壤碳释放的影响不明显。此外,土壤硝态氮和铵态氮含量均随生物炭施用量增加而降低。两种生物炭均提高了土壤微生物生物量碳含量且最高值均出现在施用5%的处理(分别为53.93±9.87和43.45±3.44 mg·kg~(-1));两种生物炭按5%比例施用时,可显著提高土壤微生物生物量氮,但施用其他比例时土壤微生物生物量氮变化不明显。因此,对采用林业废弃物生物炭改良红壤丘陵区的土壤而言,应采取较低量的施用策略,在达到土壤-生物炭固碳目标的同时亦可避免短期内的土壤碳损失。  相似文献   

13.
秸秆生物质炭在旱作条件下可通过络合重金属阳离子、提高土壤pH值等途径降低重金属活性和有效性,但是淹水条件下生物质炭对重金属形态的影响研究较少。以30 g·kg~(-1)施用量将不同温度条件下制备的油菜和花生秸秆生物质炭及商品活性炭添加到广东徐闻砖红壤中,并添加5 mmol·kg~(-1)Cu(NO_3)_2和20 g·kg~(-1)葡萄糖,淹水培养49 d,采用连续提取法分级提取不同形态Cu~(2+)并研究其动态变化。结果表明,添加活性炭、400℃条件下制备的油菜秸秆炭和300、400、500℃条件下制备的花生秸秆炭后,淹水培养初期土壤溶液pH值比对照组明显增加,酸溶态Cu~(2+)含量显著降低,还原态和氧化态Cu~(2+)含量有所升高。随淹水时间增加,土壤pH值逐渐降低,导致生物质炭处理土壤中酸溶态Cu~(2+)含量显著升高,生物质炭对Cu~(2+)的钝化效果逐渐减弱并消失,还原态和氧化态Cu~(2+)含量降低。在49 d培养时间内残渣态Cu~(2+)含量变化不大。淹水条件下生物质炭对砖红壤中Cu~(2+)的钝化效果并不持久,甚至由于生物质炭中有机物质分解而产生更多有机酸,导致淹水后期生物质炭处理砖红壤pH值较对照低,反而提高了Cu~(2+)的活性和生物有效性。  相似文献   

14.
为了解施用生物炭对杨树人工林土壤CO_2、CH_4、N_2O3种温室气体排放的长期影响及其主要调控机理,以东台国有林场杨树人工林为对象,设置低生物炭添加量(D,40 t·hm~(-2))、中生物炭添加量(Z,80 t·hm~(-2))、高生物炭添加量(G,120 t·hm~(-2))及对照(CK,0 t·hm~(-2))4种不同处理,采用静态箱-气相色谱法对CO_2、CH_4、N_2O3种温室气体的排放速率进行了多次测定,同时测定分析了土壤含水率、土壤酶活性等土壤理化及生化指标,为阐明生物炭对杨树人工林生态系统的长期影响提供理论依据。结果表明:(1)对照样地土壤CO_2排放速率变化范围为123.428-412.066mg·m-2·h-1,中、高生物炭添加处理显著促进了土壤CO_2的排放(P=0.001、0.000),分别导致CO_2年平均排放速率增加了21%和20%;(2)对照样地土壤CH4排放速率变化范围为0.578-1.405 mg·m-2·h-1,中、高生物炭添加处理显著抑制了土壤CH_4的排放(P=0.000、0.000),分别导致CH4年平均排放速率降低了21%和33%;(3)对照样地土壤N2O排放速率变化范围为0.124-0.297mg·m-2·h-1,中、高生物炭添加处理显著抑制了土壤N2O的排放(P=0.003、0.000),分别导致N_2O年平均排放速率降低14%和37%;(4)土壤CO_2排放主要与土壤微生物量C(MBC)、水溶性有机碳(DOC)、全氮(TN)、蔗糖酶活性(IA)呈显著正相关关系(P=0.000、0.000、0.013、0.000),与土壤微生物量N(MBN)、土壤微生物量P(MBP)呈显著负相关关系(P=0.000、0.000);(5)土壤CH4排放和N2O排放主要与MBN、MBP、土壤含水率(SMC)、蛋白酶活性(PA)、脲酶活性(UA)、IA呈显著正相关关系(PCH4=0.011、0.009、0.005、0.000、0.000、0.007;PN2O=0.021、0.024、0.002、0.000、0.001、0.019),与MBC、DOC、TN呈显著负相关关系(PCH4=0.000、0.003、0.002;PN2O=0.001、0.012、0.001)。综上,添加生物炭导致了土壤N、P养分有效性增加和蛋白酶、脲酶等相关酶活性降低,可能是本区域生物炭调控杨树人工林土壤3种温室气体排放的主要机制。  相似文献   

15.
为探讨生物质炭-沼液配施条件下氮循环功能基因调控农田土壤氮素转化并影响农作物氮素吸收利用机制.本试验以浙江省杭州市红黄壤作为研究对象,设置生物质炭和沼液两个因素,探究生物质炭-沼液配施条件下土壤基本理化性质和氮循环功能基因丰度变化情况,刻画功能基因与农田氮素利用率间的耦合关系.结果表明,生物质炭-沼液配施可以显著降低土壤容重,提升土壤pH和土壤氮素含量,其中,高剂量生物质炭-沼液配施(C3B2)处理较单施化肥(COBO)处理铵态氮、硝态氮、全氮含量增幅均达到显著水平(P<0.05).与空白处理(CK)相比,生物质炭-沼液配施(C3B2)处理则显著提高了反硝化功能基因丰度,较单施化肥(C0B0)处理增幅30.98%和44.99%.冗余分析结果显示,铵态氮、硝态氮和有机碳含量对土壤氮循环功能基因影响较为显著,结构方程模型则表明硝化作用功能基因丰度的提升对包菜氮素农学利用率呈现负相关趋势.研究结果表明,在相同养分施用量的条件下,生物质炭-沼液配施可显著提高土壤肥力.氮素和有机碳含量是影响功能基因丰度的关键因素,硝化作用功能基因丰度的降低可以提高农田氮素利用率.本研究结果可以为促进农业废...  相似文献   

16.
稻壳炭施用对太湖滨岸灰潮土氮磷淋失及土壤性质的影响   总被引:1,自引:0,他引:1  
探究稻壳炭施用对太湖滨岸灰潮土养分淋失的抑制效应,以及对灰潮土性质的改良作用,为太湖滨岸植被带恢复提供理论依据。通过16周的土柱淋溶试验,研究了不同施用率(0%,1%,2%和5%)稻壳炭与肥料(NH_4NO_3和KH_2PO_4)混施后,对太湖滨岸灰潮土氮磷淋失以及土壤性质的影响。结果表明,随着稻壳炭施用量的增加,灰潮土土柱渗滤液中铵态氮累积淋失量减少11.7%—26.6%,硝态氮累积淋失量减少32.4%—67.3%。然而,当稻壳炭施用率为2%和5%时,土柱渗滤液中磷酸盐累积淋失量分别显著增加了32.1%和54.2%。稻壳炭施用16周后,灰潮土土壤总氮含量显著增加,土壤有效磷含量在2%和5%施用率下显著增加。同时,添加稻壳炭使土壤铵态氮含量显著减少,而土壤硝态氮含量显著增加,这表明稻壳炭添加增强了滨岸灰潮土土壤硝化作用。灰潮土土壤微生物生物量碳在2%和5%的稻壳炭施用率下分别显著增加了22.4%和36.8%,土壤微生物生物量氮在5%的稻壳炭施用率下显著增加了48.4%。随着稻壳炭施用量的增加,灰潮土土壤容重减小,而pH值、土壤总孔隙度以及土壤持水能力增加。因此,施用稻壳炭减少了太湖滨岸灰潮土土壤氮素的淋失,但当施用率为2%—5%时,增加了土壤磷素淋失的风险;添加稻壳炭使土壤总氮,有效磷以及土壤微生物生物量增加,这将有利于太湖滨岸植被带的恢复。  相似文献   

17.
生物质炭施加对新成水稻土碳组分及其分解的影响   总被引:1,自引:0,他引:1  
将玉米芯热解炭化的生物质炭施加于长江沉积物新成土上发育的稻田土壤中,1 a后采集土壤并进行土壤碳分组及土壤培养;基于生物质炭与土壤的碳同位素丰度差异,量化生物质炭来源的有机质在土壤组分中的分布,分析施用生物质炭对土壤碳组分及其培养过程中分解动态的影响。结果表明,施用生物质炭可显著增加各级团聚体的有机碳含量,大部分(76%~90%)生物质炭以游离态形式存在于大团聚体(250μm)和微团聚体(50~250μm)外,少部分与微团聚体或20μm土壤矿质较紧密地结合。添加的生物质炭未促进土壤团聚体的形成。土壤中生物质炭自身的分解很弱,但不同程度地促进了原有土壤碳的分解。该试验初步证实,生物质炭单独施用未明显促进新成土上发育的稻田土壤有机碳的稳定,反之短期内可能加速土壤原有有机碳的分解。  相似文献   

18.
老化生物炭对红壤铝形态影响的潜在机制   总被引:2,自引:0,他引:2  
生物炭能降低酸性红壤活性铝含量,而经过长期降雨淋洗或酸雨等环境作用发生老化后,生物炭将如何改变土壤铝形态进而影响缓解铝毒的能力?为评估生物炭缓解铝毒潜力提供重要依据,本研究采用水洗和酸化的方法加速花生壳生物炭老化,将原生物炭、水洗老化生物炭和酸化老化生物炭与酸性红壤进行充分混合,设置CK(0%生物炭)、PB(施2%原生物炭)、WB(施2%水洗生物炭)和AB(施2%酸化生物炭)共4个处理进行装盆熟化培养,每个处理4个重复,探究老化生物炭对红壤铝形态影响的潜在机制。结果表明,与CK相比,老化生物炭可增加土壤速效钾和有机质的含量;PB和WB处理红壤p H分别上升了0.17和0.16个单位,而AB处理红壤p H却降低0.44个单位;PB和WB处理红壤交换性酸总量分别下降70.08%和34.84%,而AB处理红壤交换性酸总量却升高18.24%,说明老化生物炭不能有效降低土壤中活性酸和潜在酸的含量,酸化老化生物炭甚至会加剧土壤的酸化。此外,与CK相比,PB和WB处理红壤中腐殖酸铝、胶体铝离子和单聚体羟基铝离子含量分别增加了8.59%和2.87%、20.17%和14.46%、101.65%和32.92%,交换性Al~(3+)含量却分别降低了81.87%和49.15%,而AB处理中交换性Al~(3+)和胶体铝离子含量分别升高了17.98%和20.67%,而腐殖酸铝和单聚体羟基铝离子的含量却降低了40.69%、49.79%,表明水洗老化生物炭仍可使具有生物毒害性的Al~(3+)含量下降,而酸化老化生物炭会增加Al~(3+)的含量。进一步研究表明,生物炭老化前后,不同形态的铝会发生转化关系,土壤中各形态铝比例发生变化,但是腐殖酸铝和胶体态铝Al(OH)_3~0仍然是活性铝的主要赋存形态。因此,生物炭在老化后,仍然具备提高土壤养分的潜力,但是其对土壤酸度和铝毒的缓解能力却显著下降,甚至会加剧土壤酸化和铝毒害。  相似文献   

19.
生物炭对土壤水肥热效应的影响试验研究   总被引:2,自引:0,他引:2  
本文通过野外大田小区试验以番茄(Lycopersicon esculentum Mill)为供试作物,通过在土壤中施加不同含量生物炭(Biochar)研究生物炭对土壤含水率、有机碳、速效养分含量和土壤温度的影响,从而寻求一个较为合适的施用量,为生物炭在内蒙古地区的大面积推广提供科学的理论依据。试验共设5个处理,3个重复:不施加生物炭(CK),生物炭使用量分别为10 t·hm^-2(A),20 t·hm^-2(B),40 t·hm^-2(C),60 t·hm^-2(D),在各生育期取土样测定土壤含水率、有机碳、速效养分含量,并在各生育期连续3天测定土壤地表温度。试验结果表明:不同处理下土壤含水率随生物炭施用量增加呈先增加后减小的趋势,且均高于对照组,其中施炭量为40 t·hm^-2处理的土壤含水率增幅最明显,0~10 cm土层各生育期土壤含水率较对照组最大增幅分别为20.8%、13.7%、21.8%,10~20 cm土层各生育期土壤含水率较对照组最大增幅分别为33.9%、17.1%、21.3%;不同处理下土壤温度随着生物炭施用量的增加而升高,两者具有显著的正相关关系,各生育期各处理土壤地表温度较对照组最大增幅分别为58.1%、31.3%、55.8%;不同处理土壤有机碳含量随着生物炭施用量的增加而增大,番茄各生育期各处理土壤有机碳含量较对照组最大增幅分别为80.9%、62.7%、63.9%;不同处理土壤中碱解氮、速效钾、速效磷含量均随生物炭施用量的增加而呈现先增大后减小的趋势,且均大于对照组,各生育期各处理土壤碱解氮较对照组最大增幅分别为92.7%、45.7%、106.5%,速效磷最大增幅分别为120.1%、39.3%、250.4%,速效钾最大增幅分别为86.2%、118.5%、203.4%。综上所述,生物炭对于砂壤土具有保水、保肥、保温的特性,对于提高土壤水肥利用效率,增加土壤有机碳具有重要的作用,而且通过试验验证40 t·hm^-2的施?  相似文献   

20.
温志豪  曾路生  柴超  吴娟 《环境化学》2019,38(10):2356-2365
本文建立了一种利用生物质炭并结合过氧化氢对火电厂多环芳烃(PAHs)污染土壤的修复方法.采集诸城火电厂多环芳烃污染土壤为研究对象,采用盆栽试验的方法,研究了不同梯度生物质炭与过氧化氢配合施用修复多环芳烃污染土壤,对小白菜生长指标及土壤多环芳烃含量的变化.结果表明,合理施用生物质炭配施过氧化氢能促进小白菜生长,有效降低土壤和小白菜中多环芳烃含量.与T1(不施生物质炭)对比,生物炭处理的小白菜生物量增加8%—15%,叶绿素SPAD值增加25%—50%,荧光参数和光谱反射率有一定提高,小白菜和土壤多环芳烃含量显著减少.同时,使污染酸化土壤pH值提高了0.2—0.6个单位,土壤有机质含量提高了9.5%—45.6%,碱解氮、速效磷与速效钾等养分有一定量的增加.其中,T7(0.5‰H_2O_2+2‰生物质炭)处理修复效果最好,供试蔬菜和土壤中多环芳烃去除率分别达到了69.6%和58.8%.其次是T3(2‰生物质炭)处理,供试蔬菜和土壤中多环芳烃去除率分别达到了42.9%和54.6%,也具有较好的去除效果.因此,可推荐在修复实践中参考应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号