首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Indoor air quality in elementary schools of Lisbon in spring   总被引:1,自引:0,他引:1  
Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO2, speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May–June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO2 in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO2 ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m3 defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources.  相似文献   

2.
The rapid growth of China’s economy has led to severe air pollution characterized by acid rain, severe pollution in cities, and regional air pollution. High concentrations are found for various pollutants such as sulfur dioxides (SO2), nitrogen oxides (NOx), and fine particulates. Great efforts have thus been undertaken for the control of air pollution in the country. This paper discusses the development and application of appropriate technologies for reducing the major pollutants produced by coal and vehicles, and investigates air quality modeling as an important support for policy-making.  相似文献   

3.
Air pollution is one of the most important global environmental issues. Urban air quality is generally becoming vulnerable especially in the developing countries due to various developmental activities. Several national and international studies prove that air pollution is harmful to human health and its long term exposure contributes to even mortality. Current study has been designed to determine the vertical floor wise air quality status of the city of Kolkata and the seasonal variation of the pollutants during two consecutive years. Particulate matter (PM10 and suspended particulate matter), oxides of nitrogen, sulfur dioxide and carbon monoxide were analyzed for a total number of 135 air quality samples throughout the study area and period. Pollutants were found positively correlated with each other and with the floor heights. According to the air quality indexing, all the places were found affected from moderate to severe air pollution irrespective of the vertical floor heights, seasons and places. Although, no such seasonal trend has been emerged from the study but the number of samples beyond standard is found highest during the winter season followed by pre-monsoon.  相似文献   

4.
Time-series analysis of effects of pollutants on emergency hospital admissions indicates important synergistic interactions among pollutants and to a lesser degree nonlinearities in effects of single pollutants. Comparisons of alternative econometric specifications are made to determine the appropriateness of incorporating nonuniform pollution impacts. The data substantially support the existence of synergisms among pollutants with high levels of sulfur dioxide, SO2 (particulates), increasing the impact of particulates (SO2) on emergency hospital admissions. Marginal effects of either pollutant are, however, small at current ambient air quality levels. These results indicate that damage estimates were likely to be understated during the 1960's when pollution levels were high, while, at current levels of those pollutants considered here, marginal damages are lower than would be estimated in studies failing to incorporate synergistic and nonlinear impacts.  相似文献   

5.
A study has been conducted over a period of one year on measurements of air pollution in the Shuaiba Industrial Area (SIA) of Kuwait. The study included analysis of pollutant behaviour relative to the wind speed and direction. SIA comprises several large scale industries including three petroleum refineries, two power plants, two fertilizer plants, a cement plant, a chlorine and soda plant, a commercial harbour and two large oil loading terminals. Measurements of 15 parameters have been carried out every 5 minutes using a mobile laboratory fitted with an automatic calibrator and a data storage system. The pollutants studied include methane, non‐methane hydrocarbons (NMHC), carbon monoxide, carbon dioxide, nitrogen oxides (NO, NO2, and NO x ), sulphur dioxide, ozone and suspended dust. Meteorological parameters monitored simultaneously include wind speed and direction, air temperature, relative humidity, solar radiation, and barometric pressure. The air quality data collected using the mobile laboratory have been used to calculate the diurnal and monthly variations in the major primary and secondary pollutants. Distribution levels of these pollutants relative to wind direction and speed have also been used in the analysis. The results show large diurnal variations in some pollutant concentrations. Generally, two types of concentration variations have been found, depending on whether the species is a primary or a secondary pollutant. Diurnal variations with two maxima were observed in the concentrations of primary pollutants including NO, SO2, NMHC, CO and suspended dust, whereas a single maximum was observed for secondary pollutants such as O3and NO2. The monthly variations of SO2and NO x showed maximum values during the warm months. However, ozone showed a quite marked seasonal variation with maxima during spring and late summer and a minimum during the early summer. The results also indicated a common source for NO x , SO2, NMHC, CO and suspended dust to the North‐West (NW) of the monitoring station. Moreover for NO x and SO2, another less significant source is to the South‐South‐West (SSW) and South‐West (SW) of the monitoring station.  相似文献   

6.
Identifying the major sources contributing to air pollution is a problem of fundamental importance in developing effective air quality management plans. Multivariate receptor modeling aims to achieve this goal by unfolding the air pollution data into components associated with different sources based on factor analysis models. We analyze the PM10 data obtained from 17 monitoring sites in Seoul to locate the major source regions using multivariate receptor modeling. The model uncertainty caused by the unknown number of sources and identifiability conditions is assessed by posterior probability of each model. The estimated source spatial profiles seem to be consistent with our prior expectation about the PM10 sources in Seoul.  相似文献   

7.
Urban energy consumption is one of the most important causes of air pollution. Air pollution-oriented ecological risk assessment is of great significance to the promotion of urban environmental protection. This paper focuses on ecological risk in Xiamen city caused by air pollutant discharge from urban energy consumption. The Long-range Energy Alternatives Planning model was used to establish two scenarios of energy consumption in Xiamen city, and based on different scenarios, we estimated urban energy consumption and discharge quantity of air pollutant (DQAP). A box model and an expert scoring method were used to calculate the air pollution burden (APB) of SO2, NO2, CO, PM10 and PM2.5 and to obtain the probabilities of different air pollution loads. An ecological risk assessment model was developed and utilized to predict Xiamen city’s ecological risks in 2020. The results showed that under an energy-saving scenario, the ecological risks for PM2.5, SO2 and NO2 are high, whereas the ecological risks for CO and PM10 are low. Under a baseline scenario, the ecological risks for PM2.5, SO2 and NO2 are moderate, whereas the ecological risks for CO and PM10 are low. In addition, the APB of SO2, NO2, CO, and PM2.5, but not of PM10, is predicted to rise. In the simulation, energy generation from coal is the main source of air pollution. Although the DQAP from automobiles is not high, it is predicted to rise year-on-year. In summary, the ecological risk due to pollution in Xiamen city is high, and the main pollutants are SO2, NO2 and PM2.5.  相似文献   

8.
Comprehensive data on environmental monitoring programs concerned with air pollutants like ozone (O3), nitrogen dioxide (NO2), nitrogen oxide (NO), carbon dioxide (CO2) und carbon monoxide (CO), and occassionally suspended dust, benzene and other environmental chemicals, are available on the free Internet. As different monitoring information systems exist in most states or big cities of the Federal Republic of Germany, a comparison of these systems with their pros and cons is of great interest to the public. Environmental air pollutant monitoring systems in 16 states of Germany are listed and evaluated by applying 5 evaluation criteria for the differentiation of these systems. Different data-analysis methods will be applied, the Hasse diagram technique, a method derived from discrete mathematics and the partially Ordered Scalogram Analysis with Coordinates (POSAC) method, a multivariate statistical approach. The important objects, the so-called maximal or minimal objects, are detected in both methods. The Internet-based environmental monitoring systems of the states of Berlin, Bremen, Saxony-Anhalt, Baden-Wurttemberg are rated good in the evaluation approaches, whereas the information systems of the states of Brandenburg, North Rhine-Westphalia, Saxony received a rather poor ranking. The attributes of DA, way of data presentation on the Internet, and ME, type and length of measurements, were pointed out in the data-analysis methods. Multivariate explorative statistical methods offer a comprehensive tool for the graphical analysis of data-matrices. The ranking of objects is given in an effective and graphically comprehensible manner using the Hasse diagram technique. The choice and preference of the methods is problem-driven. A combination of these different methods is envisaged in the authors’ future research.  相似文献   

9.
Air pollution has a deleterious impact on public health and the environment. There is few knowledge on the effect of air pollution on terrestrial microbial communities, despite the major role of microbes in ecosystems. Here, we designed an in situ trial ecosystem to assess the impact of moderate atmospheric pollution, below World Health Organization (WHO) thresholds, on an indigenous microbial communities, including bacteria, fungi, ciliates, algae, cyanobacteria, testate amoebae, rotifers and nematodes, extracted from terrestrial bryophytes. These micro-ecosystems were placed at a rural, an urban and an industrial site in France and were thus exposed to various levels of nitrogen dioxide (NO2), from 6.6–67.9 μg·m?3, and particulate matter, from 0.7–7.9 μg·m?3. Microbial analysis was performed by microscopy. We determined atmospheric temperature, relative humidity and particulate matter with diameter lower than 10 µm (PM10), Cu, Cr, Fe, Ni, Pb, Zn in PM10, and (NO2). Results show a significant impact of chronic moderate exposure to NO2 and copper Cu-associated particulate matter on the global microbial network complexity. This is evidenced by a loss of about 40 % of microbial co-occurrence links during incubation. Most lost microbial links are ecologically positive links. Moreover, most changes in community co-occurrence networks are related to testate amoebae, a major top predator of microbes. Overall, our findings demonstrate that air pollution can have strong deleterious effects on microbial interactions, even at levels below WHO thresholds.  相似文献   

10.
Air quality in an urban atmosphere is regulated by both local and distant emission sources. For air quality management in urban areas, identification of sources and their relationships with local meteorology and air pollutants are essential. The critical condition of air quality in Indo-Gangetic plain is well known, but lack of data on both local and distant emission sources limits the scope of improving air quality in this region. Concentrations of particulate matter of size lower than 10 μm (PM10) were assessed in the highly urbanized Varanasi city situated in middle Indo-Gangetic plain of India from 2014 to 2017, to identify the distant air pollution sources based on trajectory statistical models and local sources by conditional bivariate probability function. Modifying effects of meteorology and air pollutants on PM10 were also explored. Mean PM10 concentration for the study period was 244.8 ± 135.8 μg m?3, which was 12 times higher than the WHO annual guideline. Several distinct sources of traffic as the major source of PM10 were identified in the city. Trajectory statistical models like cluster analysis, potential source contribution function and concentration-weighted trajectory showed significant contributions from north-west and eastern directions in the transport of polluted air masses to the city. Dew point, wind speed, temperature and ventilation coefficient are the major factors in PM10 formation and dispersion.  相似文献   

11.
Air quality of gaseous emissions from crude petroleum flames and fumes were monitored in a poultry house at 10 min intervals; from 10.10am–11.10am daily for 14 days. The crude petroleum burning was simulated in a metal burner, 22.86 cm high with a diameter of 17.80 cm and a thickness of 1.27 cm designed for the purpose. The micro-climate (ambient temperature, relative humidity and light intensity) of the experimental environment (poultry houses) was recorded. Results showed that the mean gaseous pollutants emitted before and during the experiments varied within the poultry house. Gases such as sulphur dioxide (SO2), hydrogen sulphide (H2S), methane(CH4) and carbon monoxide (CO) were higher in the brooding than finishing phase, while volatile organic carbon (VOC) and suspended particulate matter (SPM) levels were lower at the brooding than finishing phase. The values obtained in this study for 60 min (at 10 min intervals) are far higher than the values elucidated by the Federal Environmental Protection Agency, which are outdoor air quality measurements as compared to those in this study measured indoors.  相似文献   

12.
A typical driving restriction prohibits drivers from using their vehicles on given weekdays, based on the last digits of their vehicles’ license plates. A number of cities in developing countries have used license plate-based driving restrictions as a policy for reducing urban air pollution and traffic congestion. This paper develops a theoretical model of the effects of license plate-based driving restrictions on air quality that combines an economic model with information about the sources and atmospheric chemistry of different air pollutants. We then draw upon suggestive empirical evidence from license plate-based driving restrictions implemented in Bogotá, Colombia. Consistent with our theory model, we find suggestive empirical evidence that under certain circumstances, due to substitution, the purchase of a second car, the use of alternative modes of transportation, and/or atmospheric chemistry, it is possible for license plate-based driving restrictions to increase air pollution. Also consistent with our theory, we find that license plate-based driving restrictions may have different effects on different air pollutants, reflecting heterogeneity in the sources and atmospheric chemistry of the pollutants. In particular, owing to atmospheric chemistry, it is possible for a license plate-based driving restriction to cause a significant decrease in NO and a significant increase in NO2, NOx, and O3.  相似文献   

13.
Flue gas recirculation (FGR) is a low nitrogen oxide (NOX) combustion technology. The present study used standard gas to simulate the cycle gas (the main ingredients of which are oxygen (O2), nitrogen (N2), and carbon dioxide (CO2)). The coal grate-fired process was divided into three zones, namely (1) volatilization zone, (2) main combustion zone, and (3) char combustion and burn-out zone. The effects of FGR on coal combustion and NO emissions were investigated in these zones of a unit-boiler experimental system. An industrial test was then conducted on a chain boiler that previously used FGR. Data showed that if the cycle gas was directed into the furnace from the volatilization zone, the curve of the coal surface temperature moved backwards, the temperature peak increased, and coal ignition was delayed. When the FGR rate was 20%, NO emissions/g coal was 41.8% less than in the absence of FGR, in the overall combustion process except for the volatilization zone. An industrial test demonstrated that FGR decreased the NO emissions and incomplete-combustion loss of gas. NO and carbon monoxide (CO) emissions were reduced by 26.9 and 38%, respectively. These observations may prove to be beneficial in reducing ambient air pollution and saving energy.  相似文献   

14.

Transport of air pollutants emitted from urban valleys can be strongly restricted by interactions between static and dynamic factors including topographic forcing, low-level atmospheric stability related to temperature inversions, and urban heat island-induced circulations. Interplay between these processes has a complex and dynamic nature, and is determinant for the evolution of different ventilation mechanisms and the associated impacts on air quality. Here we investigate these transport mechanisms through large eddy simulations using EULAG, an established model for multiscale flows, to simulate an idealized atmospheric environment in narrow versus wide urban valleys during critical conditions for air quality (high atmospheric stability). Our results show how the ventilation of valleys depends on a dynamic (variable during the daytime) balance between interacting and sometimes competing processes related to thermally-driven slope flows, urban heat island-induced flows, and the trapping effect of atmospheric stability; and how valley width affects this balance. Particularly important is that the time-space distribution of pollutants (a passive tracer) varies greatly between both valleys despite having the same urban area and emission rates. These variations lead to pollutants being mostly concentrated in different areas of the narrow and wide valleys. We discuss the mechanisms behind these results and their potential implications for real urban valleys. Further understanding of these mechanisms is crucial for explaining the occurrence of severe air pollution episodes and informing related decision-making processes in urban valleys.

  相似文献   

15.
Volatile organic compounds containing reduced sulphur such as thiols and thioethers are released mostly from biological activities and a number of manufacturing processes, such as papermaking and petroleum refining. Environmentally benign and cost-effective air pollution control technology for reduced sulphur compounds is still a topic of research, e.g., in pulp and paper industry. Due to its advantages, photocatalytic oxidation over titanium dioxide presents a potential alternative for the air treatment strategies. The temperature influence on the reaction pathway and kinetics of gas-phase photocatalytic oxidation and thermal catalytic decomposition of ethanethiol over Degussa P25 TiO2 was established by a continuous flow method in a simple tubular reactor at temperatures from 373 to 453 K. Kinetic parameters for ethanethiol were: adsorption enthalpy −45 kJ mol−1 and activation energy 42 kJ mol−1. Sulphur dioxide, carbon monoxide, carbon dioxide, acetic acid and water were identified as by-products.  相似文献   

16.
Swine slurry is a source of atmospheric pollutants. Emissions of basic and acidic compounds from slurry are largely dependent on the surface pH. In a storage system, the pH at the surface layers changes over time due to the volatilisation of ammonia (NH3), carbon dioxide (CO2) and acetic acid (HAc). In this article, a comprehensive gas emission–pH (GE–pH) coupled model is proposed to describe the simultaneous release of acidic and basic gaseous pollutants from swine slurry. The model was applied to describe the release of NH3, CO2, HAc and hydrogen sulphide (H2S) from standard slurries stored in animal houses, outside storage tanks and lagoons. The modelled results agreed well with values reported in the literature and could be reasonably interpreted. The key parameters affecting the release of gases were: initial pH, initial concentration of total ammonium nitrogen and inorganic carbon, slurry temperature and air velocity. This study suggests that future modelling studies on gas emissions from animal slurry should consider the concentration of inorganic carbon and the frequency in which the slurry surface is mixed or altered, because they affect the surface pH and the release of gaseous pollutants from slurry.  相似文献   

17.
This review reports the research progress in the abatement of major pollutants in air and water by environmental catalysis. For air pollution control, the selective catalytic reduction of NO x (SCR) by ammonia and hydrocarbons on metal oxide and zeolite catalysts are reviewed and discussed, as is the removal of Hg from flue gas by catalysis. The oxidation of Volatile organic compounds (VOCs) by photo- and thermal-catalysis for indoor air quality improvement is reviewed. For wastewater treatment, the catalytic elimination of inorganic and organic pollutants in wastewater is presented. In addition, the mechanism for the procedure of abatement of air and water pollutants by catalysis is discussed in this review. Finally, a research orientation on environment catalysis for the treatment of air pollutants and wastewater is proposed.  相似文献   

18.
Indoor and outdoor air pollution is known to contribute to increased lung cancer incidence. This study is the first to address the contribution of home heating fuel and geographical course particulate matter (PM10) concentrations to lung cancer rates in New Hampshire, USA. First, Pearson correlation analysis and geographically weighted regression were used to investigate spatial relationships between outdoor PM10 and lung cancer rates. While the aforementioned analyses did not indicate a significant contribution of PM10 to lung cancer in the state, there was a trend towards a significant association in the northern and southwestern regions of the state. Second, case-control data were used to estimate the contributions of indoor pollution and secondhand smoke to the risk of lung cancer with adjustment for confounders. Increased risk was found among those who used wood or coal to heat their homes for more than 10 winters before the age of 18, with a significant increase in risk per winter. Resulting data suggest that further investigation of the relationship between heating-related air pollution levels and lung cancer risk is needed.  相似文献   

19.
Zhang  Chao  Li  Sha  Guo  Gan-lan  Hao  Jing-wen  Cheng  Peng  Xiong  Li-lin  Chen  Shu-ting  Cao  Ji-yu  Guo  Yu-wen  Hao  Jia-hu 《Environmental geochemistry and health》2021,43(9):3393-3406

Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12–15.79%), 3.09% (95% CI 0.64–5.59%) and 1.68% (95% CI 0.28–3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (<?35 years) than advanced age mothers (≥?35 years); however,?≥?35 years group were more vulnerable to O3 than?<?35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.

  相似文献   

20.
The authors combine information from 2 million death certificates and 2 million observations from the Public Use Sample. With several strategies for controlling extraneous variation, the authors explore these data in order to measure the chronic effects of several air pollutants on white mortality rates. In the United States, approximately 140,000 deaths a year (Wo of all deaths) may be associated with air pollution. The size of this effect increases dramatically with age, with children displaying no detectable associations. Some pollutants, especially sulfate, are closely associated with many deaths, whereas other pollutants, especially ozone and nitrogen dioxide, have no apparent effect on expected lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号