首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
天津城区秋冬季黑碳气溶胶观测与分析   总被引:2,自引:0,他引:2  
姚青  蔡子颖  韩素芹  黄鹤 《环境化学》2012,31(3):324-329
利用天津大气边界层观测站2010年9月—2011年1月黑碳气溶胶、PM2.5质量浓度、大气能见度及常规气象观测数据,研究天津城区秋冬季黑碳气溶胶污染特征.结果表明,天津秋冬季黑碳气溶胶质量浓度均值7.24μg.m-3和6.46μg.m-3,分别占PM2.5质量的9.42%和7.98%,其吸收作用分别贡献大气消光的17.2%和17.6%;采用最大频数浓度法计算黑碳浓度本底值为2.50μg.m-3;黑碳浓度的日变化特征与天气过程有关,雾和霾天气下黑碳浓度较高,降水利于清除黑碳污染,秋季高浓度黑碳除局地源污染外,可能还与河北、山西、天津等地燃烧秸秆有关.  相似文献   

2.
基于春节前后(2018年1月1日—2018年3月31日)宝鸡市高新区宝鸡文理学院站点的黑碳气溶胶(BC)、浊度仪、颗粒态污染物(PM_(10)、PM_(2.5)和PM_(1.0))、气态污染物(CO、NO_2、SO_2和O_3)的逐时数据及常规气象数据,对宝鸡市高新区BC气溶胶的时间变化特征、来源及影响因素进行分析.结果表明,观测期间BC质量浓度的变化范围为0.01—5.62μg·m~(-3),平均浓度为0.63μg·m~(-3).BC与风速和能见度均呈负相关.观测期间BC浓度日变化呈"双峰双谷"型,峰值出现在09:00和19:00,谷值出现在05:00和16:00;寒假前BC浓度昼夜变化整体高于寒假期间和春季开学,可能与寒假前频繁的人为活动,不易扩散的气象条件有关.BC占PM_(2.5)的0.84%,其吸收作用占大气消光的2.14%.除O_3外,BC日平均浓度与PM_(2.5)、CO和NO_2呈显著相关,相关系数分别为0.626、0.623和0.473,说明BC气溶胶与之均有部分共同源.  相似文献   

3.
天津城区PM_(2.5)中碳组分污染特征分析   总被引:1,自引:0,他引:1  
为探讨天津城区碳组分的季节污染特征,于2009年4月—2010年1月采集大气PM2.5样品,测定其碳组分浓度,分析有机碳(OC)和元素碳(EC)的相互关系,并探讨气象条件对碳组分浓度的影响.结果表明,天津城区PM2.5质量浓度为141.47μg·m-3,OC和EC质量浓度年均值分别为18.81μg·m-3和6.86μg·m-3,分别占PM2.5质量浓度的13.3%和4.8%,碳组分系PM2.5的重要组成部分;季节分布特征显示,秋、冬季OC和EC污染较为严重,总碳气溶胶(TCA)分别为45.74μg·m-3和46.75μg·m-3,占PM2.5质量浓度的30.1%和40.1%;采用改进的OC/EC最小比值法计算得到的二次有机碳(SOC)浓度显示,秋季和冬季SOC较高,为7.45μg·m-3和7.28μg·m-3.后向轨迹的聚类分析表明,局地气流或偏南气流控制下的PM2.5中碳组分浓度较高.  相似文献   

4.
为了探讨景观生态林对大气颗粒物的调控作用,以北京大兴区景观生态林为例(主要树种为旱柳Salix matsudana),研究不同季节、不同天气条件下景观生态林内大气颗粒物质量浓度差异以及林内和林外质量浓度对比。于2013年7月至2014年5月,分四季选择不同天气类型,采用水平同步监测法对林内和林外两个监测点3种粒径大气颗粒物(TSP、PM10和PM2.5)质量浓度和气象因子进行每日10 h的连续监测(8:00─18:00)。结果表明,(1)晴朗天气景观生态林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均处于较低水平,分别为(61.53±21.73)~(174.32±36.01)μg·m-3、(28.91±10.34)~(94.87±20.45)μg·m-3和(6.29±3.86)~(23.91±12.29)μg·m-3;多云、扬尘、雾霾和雾霭天气颗粒物质量浓度较高,污染明显加重,雾霾天气下ρ(PM2.5)的增加效果更为明显,而扬尘天气下ρ(TSP)显著增加。(2)雾滴对于PM2.5与PM10具有一定的湿清除作用,也可以与霾粒子共同作用形成相对稳定的雾霭天气,其颗粒物污染程度高于其他天气状况,此时以粒径为2.5~10μm的颗粒物污染为主。(3)夏、秋和春季晴朗微风天气(风速≤3 m·s-1)和扬尘天气林内ρ(TSP)和ρ(PM10)显著低于林外,多云、轻微至轻度雾霾天气,林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均显著低于林外,晴朗大风(风速5 m·s-1)和雾霭天气林内ρ(TSP)和ρ(PM10)不显著高于林外,雾霭天气林内ρ(PM2.5)显著高于林外;冬季不同天气下ρ(TSP)、ρ(PM10)和ρ(PM2.5)林内和林外对比没有明显规律。(4)空气相对湿度、风速和风向是观测时段内影响颗粒物质量浓度的主要因子。ρ(PM2.5)与相对湿度呈线性正相关,而与风速呈非线性负相关,偏南风对颗粒物主要起输送和积累作用,偏北风对颗粒物起到稀释和扩散作用。相对于TSP和PM10,PM2.5更易受近地面气象条件的影响而堆积或扩散。  相似文献   

5.
PM2.5是影响城市空气质量和身体健康的主要污染物,也是气候和环境问题的热点研究问题之一。PM2.5即大气污染细颗粒物,是大气污染的主要物质来源,通过选取具有明显城乡过渡趋势的环保局、太慈桥、小河、花溪、马鞍山、金阳和桐木岭监测点,采集2013年12月20日到2014年2月27日的PM2.5日均质量浓度数据,以及2014年1月20日到2月18日的时均质量浓度数据,分析研究PM2.5质量浓度的时空变化特征和浓度变化的影响因素。PM2.5数据覆盖了优良中差多种污染类型,在数据平均抽样误差分析的基础上,参考世界卫生组织的空气质量准则,探索性地利用遥感、GIS技术和统计分析方法,分析贵阳市PM2.5质量浓度的城乡变化特征,以及与气象因素、土地利用信息和城市区域之间的关系。1973、1990年的贵阳城区信息分别提取自1973年12月30日的LANDSAT MSS影像(辅以1:50000地形图)、1990年10月16日的LANDSAT 5影像,土地利用现状信息和2010年贵阳建成区信息提取自2010年9月21日的LANDSAT 5。以监测点为原点生成监测点500 m缓冲区,以资源1号02C星遥感影像为数据源,采用目视解译方法提取土地利用信息,分析PM2.5质量浓度与土地利用类型的关系。利用GIS量取监测点与1973年贵阳市主城区边缘的最短距离,分析其与监测点PM2.5质量浓度的关系。结果表明,1PM2.5日均质量浓度值呈现由农村向城市递增的趋势,并随着监测时间的推移形成明显的递减趋势,7个监测点日均数据均值是77μg·m-3,农村监测点桐木岭的监测值是56μg·m-3,马鞍山74μg·m-3,和金阳73μg·m-3,花溪81μg·m-3,小河86μg·m-3,太慈桥86μg·m-3,环保局85μg·m-3。质量浓度100μg·m-3的总时数,桐木岭为13 h,金阳81 h,环保局、马鞍山106 h,花溪118 h,小河154 h,太慈桥157 h。2PM2.5日均质量浓度总体上呈下降的趋势,除夕以后PM2.5浓度显著下降,平均浓度相差47μg·m-3。PM2.5时均浓度在总体下降的趋势下,还表现出明显的24小时周期性变化,并有明显的城乡差异。3PM2.5质量浓度和气象因素间表现出复杂的非线性关系。PM2.5质量浓度与主城区距离的相关系数高达-0.89,与建筑用地密度的相关系数为-0.69。  相似文献   

6.
利用嘉兴2012年10月—2013年9月污染气体和PM2.5的连续观测资料,结合HYSPLIT_4轨迹模式计算得到的观测期间嘉兴不同季节的主导气团,分析了嘉兴市大气污染物的变化特征及不同季节下不同气团类型对该地污染物的影响.结果表明,嘉兴市CO、SO2、NO2和PM2.5日变化为双峰型分布,峰值位于07∶00—09∶00和16∶00—18∶00;O3呈单峰分布,峰值位于14∶00,这与人为活动和大气边界层变化密切相关.大气污染物具有显著的季节变化特征,SO2、CO和PM2.5冬季高(43.5,950.3,79.8μg·m-3),夏季低(21.5、522.4、38.0μg·m-3);NO2在春季最高(49.9μg·m-3),夏季最低(30.4μg·m-3);O3夏季最高(88.9μg·m-3),冬季最低(17.2μg·m-3).影响嘉兴的主导气团的来源和路径存在显著季节变化,不同气团对大气污染物的分布影响较大,局地气团下SO2的浓度显著降低;大陆气团下污染物浓度普遍偏高,SO2、CO、NO2和PM2.5分别是海洋性气团的1.6—3.0、1.5—1.6、1.6—2.0和1.5—2.3倍;海洋性气团下污染物浓度普遍较低;混合性气团对应的污染物水平介于海洋性气团和大陆气团之间.  相似文献   

7.
为了解青年奥林匹克运动会期间南京市主要大气污染物浓度变化趋势,通过南京空气质量发布系统实时监测的数据,对青奥会举办前(2014年8月3日—16日)、举办期间(2014年8月17日—28日)以及举办之后(2014年8月29日—9月9日)南京市主要大气污染物浓度变化特征进行比较分析,结果表明,青奥会前的14 d南京市PM2.5、PM10、SO2、NO2、O3浓度均值为51.6、72.2、13.5、33.1、41.7μg·m-3,青奥会期间各浓度均值为37.9、49.1、12.4、36.5、38.8μg·m-3,大气污染物浓度下降显著;而在青奥会之后,随着减排措施的取消,南京市大气污染物浓度均呈现反弹上升的趋势,各浓度均值依次为56.1、79.6、15.3、38.5、58.6μg·m-3.不同时段,PM2.5、PM10、SO2和O3浓度变化特征相似,均为青奥会之后青奥会之前青奥会期间,而NO2为青奥会之后青奥会期间青奥会之前.PM2.5、PM10、SO2、NO2日变化呈现双峰型,O3呈现单峰型的特点.  相似文献   

8.
为了解上海市地铁环境空气污染状况,于2015年4月对某地铁站内地下和地面两条线路的个体黑碳(Black carbon,BC)进行了监测,同时比较了车厢内外和地铁站内外的BC个体暴露差异.采用IMPROVETOR方法测量了车厢内PM_(2.5)样品中的8个碳组分(OC_1、OC_2、OC_3、OC_4、EC_1、EC_2、EC_3和OPC),分析颗粒物的污染来源和形貌特征.结果表明,上海市地铁站地下线和地面线BC的个体暴露日均值分别为5.6±1.0μg·m~(-3)与0.9±0.3μg·m~(-3).气象条件对地铁站地面线BC污染水平的影响较地下线大,且站台上BC浓度高出车厢内2至3倍.扫描电子显微镜(SEM)结果显示地铁内大气颗粒物形状不规则.上海市地铁站颗粒物中碳主要来源于餐饮和机动车尾气.  相似文献   

9.
于2014年春季使用Tedlar气袋采集南京市典型交通区与背景区的大气样品,参照美国EPA TO-15方法共检出30种挥发性有机物(VOCs)组分,研究了典型区域的VOCs污染特征与日变化趋势。结果表明,交通区ρ(VOCs)范围为122.58!236.97μg·m-3,平均值为(149.31±36.70)μg·m-3;背景区ρ(VOCs)范围为27.24!54.68μg·m-3,平均值为(43.29±10.53)μg·m-3。从污染物类型来看,烯烃、芳烃、卤代烃和酯类化合物是空气中的主要污染物。交通区空气中VOCs以苯系物为主,质量浓度范围为18.72!41.28μg·m-3,平均值为(25.39±7.63)μg·m-3,苯系物浓度日变化高峰出现在9:00、12:00和18:00,与道路车流量密切相关;而背景区苯系物浓度偏低,且无明显的变化趋势。对交通区苯系物各组分进行主成分分析发现,苯、乙苯、对,间-二甲苯、邻-二甲苯、4-乙基甲苯、1,3,5-三甲苯和1,2,4-三甲苯是主要的贡献因子,汽车尾气是交通区苯系物污染的主要来源。  相似文献   

10.
以我国114个城市冬季(2013年12月-2014年2月)公布的PM25数据为基础,结合其他相关数据,运用空间自相关分析、克里格插值法和逐步回归分析法,研究我国冬季PM2.5浓度空间分布差异及其影响因素.结果显示,研究期间PM2.5在空间分布上具有高值集聚、低值集聚和高值邻域的低值集聚的变化特征,全局自相关系数Moran's I为0.27.PM2.5浓度分布由北到南、从内陆到沿海具有先升高后逐渐降低的变化趋势,高浓度区域主要集中在华北平原、长江中下游平原和陕西关中平原等地区,这些区域的冬季PM2.5平均质量浓度都达到150 μg·m-3以上,最高达250 μg·m-3.多因子逐步回归分析结果表明,人为活动对我国高浓度PM25(>150μg·m-3)分布影响显著,对低浓度PM2.5(≤75μg·m-3)分布影响不显著.市辖区人口密度和第二产业GDP是显著影响我国高浓度PM2.5分布的主要人为影响因子.市辖区建成区面积、全市年末总人口和市辖区道路面积等是影响我国城市间PM2.5浓度分布差异的主要人为影响因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号