首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
为了解高寒沙区杨柳科植物的细根分解特征,以青海共和的乌柳(Salix cheilophila)和沙柳(Salix psammophila)为研究对象,探讨不同径级细根(0~0.5、0.5~1和1~2 mm)的分解规律、养分释放规律及其影响因素,对评价两种杨柳科灌木人工林在共和盆地的长期适应性具有重要意义,为长期研究高寒沙区土壤碳循环和养分循环规律提供理论依据。利用埋袋法,比较不同径级细根在经历了489 d分解后的质量残留率、养分(C、N、P、K)释放率及分解速率与初始养分含量的相关性,总结乌柳和沙柳细根分解动态特征;运用非线性指数衰减模型拟合估算细根分解系数以及分解50%、95%所需的时间。结果表明,细根分解率表现为第一年生长季6—10月分解速率快,11月—次年6月分解速率缓慢,次年生长季6—10月分解速率加快的趋势。两种柳树在前120天均为快速分解阶段,各径级细根质量残留率为77.24%~85.26%,120~360 d为缓慢分解阶段,从第360天开始分解速率缓慢上升。经过489 d分解后,两种柳树细根质量显著下降,残留率为66.44%~82.23%,且分解速率随细根直径增大而增大。通过指数衰减模型拟合得到乌柳和沙柳细根分解极其缓慢,损失95%质量分别需要26 a和38 a。细根分解过程中,乌柳和沙柳不同养分的释放特征不同。细根C、N、P以释放为主,且养分释放速率总体上随细根直径增大而增大。细根质量残留率与初始C/N值呈显著负相关关系(P0.01),即初始底物C/N值越大,细根初始分解速率越小。  相似文献   

2.
为了缓解玉米连作带来的土壤养分失衡及根系早衰,探讨生物炭对土壤养分、玉米根系生长的主要径级水平、玉米干物质积累的后效作用。采用定位试验,设置不施氮肥、不施生物炭为对照(CK),2个施氮量(常规施N量225 kg·hm~(-2),N1;减氮10%,N 203 kg·hm~(-2),N2),2个生物炭量(8.4 t·hm~(-2),C1;21 t·hm~(-2),C2)共7个处理。在生物炭施用第二年,测定玉米不同径级根系生长及土壤养分含量。结果表明,与对照(CK)相比,常规施氮配施低量生物炭(N1C1)和减氮配施高量生物炭(N2C2)显著提高了土壤有机质含量;高量生物炭配施氮肥(N1C2和N2C2)分别提高土壤碱解氮储存量29.9%和9.0%;N1C2和N2C1处理显著提高土壤全氮含量。减氮配施低量生物炭(N2C1)促进大喇叭口期玉米0—2 mm径级根系的根长较CK提高38.9%(P?0.05,下同);低量生物炭配施常规氮肥(N1C1)促进成熟期玉米根系变细13.4%、根系变长32.4%,提高0—2 mm径级根系的总根长37.9%;单施氮肥或配施生物炭对2—3、3—4径级的根长无显著影响;常规单施氮肥(N1C0)较CK显著提高4 mm径级根系根长约40.5%。低量生物炭配施常规氮肥(N1C1)提高大喇叭口期玉米单株干物质积累53.16 g·plant~(-1)。综上,研究结果说明,8.4 t·hm~(-2)生物炭配施225 kg·hm~(-2)氮肥能更好地促进成熟期玉米细根生长。单施氮肥和配施21 t·hm~(-2)生物炭均可促进土壤养分的固持。该研究结果为秸秆循环利用提供科学参考,同时为优化玉米根系结构提供新思路。  相似文献   

3.
当前氮沉降对湿地泥炭藓凋落物分解的影响还存在很大争议,并且亚热带湿地泥炭藓分解对氮沉降的响应研究鲜见报道.采用分解袋法,在鄂西南地区开展模拟氮沉降对泥炭藓凋落物分解影响的实验.模拟氮浓度设置4个水平,分别为N0(0 g m~(-2) a~(-1))、N3(3 g m~(-2) a~(-1))、N6(6 g m~(-2) a~(-1))、N12(12 g m~(-2) a~(-1)),其中N0为对照(CK).野外分解3、6、9和12个月后,室内测定泥炭藓凋落物干重、灰分、总碳(C)、总氮(N)、C/N以及总酚含量,计算凋落物的质量残留率、总碳(C)残留率及总酚残留率.结果显示:(1)氮沉降对凋落物分解的影响取决于分解时间,且泥炭藓凋落物的分解主要发生在前6个月.分解12个月后,N3浓度的质量残留率较CK下降了11.91%,而N6、N12较CK分别增加了12.98%、10.43%.(2)氮沉降对凋落物灰分含量有一定影响,但是随分解时间的延长影响程度不同.凋落物的相对灰分含量和绝对灰分含量均随分解时间的增加呈显著增加趋势.(3)氮沉降对泥炭藓凋落物总碳(C)含量有显著的影响(P 0.05),分解时间对泥炭藓凋落物总碳(C)、总氮(N)及总酚含量存在显著影响(P0.05),且氮沉降对泥炭藓凋落物总碳(C)含量的影响程度取决于分解时间.分解12个月后,凋落物中总碳(C)含量和C/N均较初始值有所下降,总氮(N)含量和总酚含量则有所增加.(4)凋落物质量残留率、总碳(C)残留率与总酚残留率呈现出较强的线性正相关.可见,氮沉降对泥炭藓分解在短期内有一定影响,但并不是简单地促进或抑制作用.(图4表2参53)  相似文献   

4.
采用野外模拟试验,通过设计3种降水变化处理[ZP(去除降水)、CK(自然降水,对照)、DP(双倍降水)],研究了降水变化对天山云杉细根分解的影响。研究结果表明,分解24个月CK处理的细根干质量残留率分别是ZP和DP处理的80%和128%倍。除在分解进行到第8个月时,3种处理细根质量残留率差异不显著外(P0.05),其余分解时期差异均显著(P0.05)。3种处理下细根分解系数为DP(0.30)CK(0.22)ZP(0.08)。与CK处理下细根分解50%和95%的时间相比,ZP处理分别增加了5.47年和23.75年,DP处理分别减少了0.44年和1.91年,说明增加降水促进了天山云杉细根分解,而去除降水抑制了分解。CK和DP处理下细根月分解率表现为双峰型曲线,ZP处理则变化相对平稳的曲线。降水处理改变了细根分解过程中纤维素和木质素分解模式及N元素的释放模式,但对C元素的释放模式没有影响。  相似文献   

5.
为明确杉木(Cunninghamia lanceolata)人工林生长状况与根系生物量的关系,进一步认知植物对环境的适应,为人工林管理提供科学依据,以福建沙县12—14年生杉木人工林为对象,选择林分生物量差异显著的3种林分(分别为高生物量CH、中生物量CM和低生物量CL),采用根钻法对根系和土壤进行取样,测定0—10、10—20、20—40 cm土层土壤C含量、土壤N含量、土壤C:N,杉木不同组分根系[吸收根(1—2级)、运输细根(3—5级)、粗根(5级以上)以及灌草根]生物量密度,并分析了不同组分根系生物量与杉木人工林林分生物量的关系。结果表明,(1)土壤C、N含量在各土层均表现为C_HC_L(P0.05)。土壤C:N在0—10 cm和10—20 cm土层无显著差异,但在20—40 cm土层表现为C_LC_MC_H(P0.05);(2)杉木根系主要分布在浅层土壤,各林分0—20 cm土层杉木吸收根,运输细根和粗根分别占0—40 cm土层的84.2%—85.9%、84.6%—85.2%和78.6%—80.0%。尽管吸收根生物量密度仅占总根生物量密度的5.0%—8.7%,但在不同林分间差异显著,在0—10 cm和10—20 cm土层表现为CHCL(P0.05)。灌草根生物量密度较低,各林分和土层间均无显著差异;(3)不同林分0—40 cm土层吸收根生物量差异显著,且与林分生物量呈正相关关系(P0.05)。该研究结果表明土壤C、N含量的差异可能是造成根系生物量和林分生物量存在差异的主要原因,土壤C、N含量高的林分,杉木吸收根生物量和林分生物量均较高。在不同组分的根系中,杉木吸收根对外界环境变化最为敏感,养分条件好的林分和土层,吸收根的生物量也更高。  相似文献   

6.
杨树根际土碳氮磷生态化学计量特征与根序的相关性   总被引:1,自引:0,他引:1  
林木细根不同生长发育等级形态特点及功能分异是根系生态学研究的新视角.为深入探索林木根际土壤养分循环过程及根土互作关系,以杨树(Populus×euramericana‘Neva’)人工林为研究对象,按照随机布点原则采集杨树人工林非根际土壤和不同根序细根的根际土壤,测定其全碳(TC)、全氮(TN)、全磷(TP)及速效N、有效P的含量,并计算土壤C、N、P化学计量比.结果显示:(1)杨树人工林根际土壤C、N、P含量与非根际土壤存在显著差异,但不同根序间速效N、有效P含量以及铵硝比(NH_4~+-N/NO_3~--N)未达到显著差异水平(P0.05).随着根序升高根际土壤TC含量显著下降,而TN含量逐渐增加.1-2级细根根际土壤TP含量显著高于4-5级根(P0.05).(2)杨树细根根际土壤C/N随着根序升高显著降低(P0.05);C/P随着根序升高逐渐下降,但在不同根序间差异不显著(P0.05).(3)基于细菌OTUs的非参数估计指数表明,根际土壤与非根际土壤细菌群落多样性存在显著差异;土壤TC和TN含量及C、N、P化学计量比均与细菌群落丰富性(Chao指数和ACE指数)呈显著相关(P0.05),TP含量与细菌群落相关性不显著.上述结果说明杨树根际土壤C、N、P养分循环呈现依赖于根序的变化特征,不同根序细根根际细菌群落组成和结构的差异性可影响土壤C、N、P循环过程.  相似文献   

7.
探究喀斯特高原石漠化区贵州青冈[Cyclobalanopsis argyrotricha (A. Camus) Chun et Y. T. Chang]-云贵鹅耳枥(Carpinus pubescens Burk)林、麻栎(Quercus acutissima Carruth)林、猴樟(Cinnamomum bodinieri Levl)林和华山松(Pinus armandii Franch)林4种次生林叶片—枯落物—土壤连续体C、N、P生态化学计量特征及相关性,可为喀斯特森林恢复重建和经营管理提供依据.对4种次生林叶片、枯落物及土壤进行野外取样,室内测定C、N、P含量及计算生态化学计量比.结果显示:4种次生林叶片组分的C、N、P元素含量为474.34、18.59、1.78 g/kg;枯落物组分C、N、P元素含量为444.21、12.84、0.96 g/kg;土壤组分(0-10 cm)的C、N、P元素含量为80.40、2.80、0.86 g/kg,叶片—枯落物—土壤连续体C、N、P含量皆表现为高—中—低变化趋势.4种森林叶片—枯落物—土壤连续体各组分C:N:P计量比依次为266:10:1、490:14:1、93:3:1,叶片-枯落物-土壤连续体C:N:P质量比呈中—高—低的变化趋势. C/N、C/P、N/P在叶片—枯落物—土壤连续体各组分中变化趋势不同,C/N在4种森林中变化规律不一致,而C/P与N/P在4种森林中皆表现为中—高—低变化趋势.土壤组分N/P与叶片组分C/P、N/P,枯落物组分N/P与叶片组分C/P、N/P之间皆为显著正相关,而枯落物和土壤组分的N/P之间没有表现出显著的相关性.与已有的研究结果相比,喀斯特次生林叶片—枯落物—土壤连续体C含量呈中—低—高格局,N含量为中—高—高格局,P含量为高—高—高格局,C:N:P化学计量为低—低—高格局,叶片N/P、枯落物C/N较低,土壤C/N相对较高,C/P、N/P相对较低.综上所述,喀斯特高原石漠化区次生林枯落物分解较快,土壤中P回归充分而N回归不足,植被生长主要受到N的限制,且养分循环速度与优势种相关,优势种选择是森林恢复与经营的核心内容.(表5参38)  相似文献   

8.
秦岭松栎林土壤生态化学计量特征及其对海拔梯度的响应   总被引:2,自引:0,他引:2  
土壤生态化学计量比是表征土壤内部养分循环及对植物养分供应状况的重要指标。通过在秦岭中段海拔1 100—1 900 m范围内油松(Pinus tabuliformis)—锐齿槲栎(Quercus aliena var. acuteserrata)混交林密集分布的区域设置23个调查样地,分0—20、20—40和40—60 cm 3个土层采取样地土壤样品进行测定,分析不同海拔、不同土层之间土壤C、N、P化学计量比的差异,旨在阐明秦岭松栎林土壤C、N、P生态化学计量特征对海拔梯度的响应规律,为揭示森林土壤养分限制因素、林地土壤质量评价及秦岭生态系统的保护等提供基础。结果显示:(1)土壤总有机C、总N和总P的平均含量分别为23.723、1.641和1.039 g·kg-1,随着海拔增加,土壤整体的总C、总N呈上升趋势,而总P无明显变化;(2)土壤C?N、C?P、N?P的均值分别为14.906、24.081和1.657,随着海拔增加,土壤整体的C?N呈"先上升—后下降"、N?P呈"先下降—后上升"趋势,C?P无明显变化;(3)0—20 cm土层的C?P、N?P均显著高于20—40 cm和40—60 cm土层,而不同土层的C?N之间无显著性差异,且土壤C、N之间的正向相关性远高于C、P和N、P;(4)在20—40 cm土层中,海拔1 300—1 500 m处的土壤C?N较高,而海拔1 100—1 300 m处的土壤N?P较高;在40—60 cm土层中,海拔1 300—1 500 m处的N?P显著低于1 100—1 300 m和1 700—1 900 m海拔段。该研究表明,秦岭松栎混交林土壤的C、N、P含量及其化学计量比沿海拔梯度发生了较为明显的变化,适量增施氮肥有助于缓解林地土壤N的限制性作用,且应更加重视高海拔区域的土壤保育工作。  相似文献   

9.
吡嘧磺隆在水稻、土壤和田水中的消解和残留   总被引:1,自引:0,他引:1  
建立了水稻(糙米、稻壳和植株)、土壤和田水中吡嘧磺隆的残留分析方法.待测样品通过二氯甲烷或二氯甲烷/丙酮(1∶1,V/V)提取,C18固相萃取小柱净化后,采用高效液相色谱串联质谱(HPLC-MS/MS)测定吡嘧磺隆的含量,并研究了2010—2011年北京、安徽和海南等3地水稻、土壤和田水中吡嘧磺隆的消解动态和残留行为.实验结果表明,对水稻、土壤和田水的添加回收率均在73%—103%之间,相对标准偏差(RSD)均小于10%,在糙米、稻壳、植株、土壤、田水中的吡嘧磺隆最低检测浓度(LOQ)为0.005 mg.kg-1,符合残留试验要求.消解和残留试验结果表明,吡嘧磺隆在田水和土壤中的消解符合一级动力学,半衰期分别为5.29—6.42 d和4.99—6.42 d.秧苗期施药,收获时水稻和土壤中均未检出吡嘧磺隆的残留.  相似文献   

10.
长江口柱状沉积物中有机质C/N比的研究   总被引:14,自引:0,他引:14  
对长江口四个站位沉积物中有机质的C/N比在垂向上的分布进行了研究,在影响沉积物中有机质C/N比的环境因素中,上覆水体的水深、盐度、密度以及浊度对其有一定的影响.在研究沉积物中有机质C/N比的分布及其影响因素的基础上,进一步估算了陆源输入和海洋自生有机碳在这四个站位沉积物有机碳中所占的比例,结果表明,海洋自生组分占沉积物总有机碳的比例分别为:53.57%(8号站位)、20.34%(11号站位),12.28%(17号站位)和32.73%(26号站位).  相似文献   

11.
A field experiment was conducted for two years on a sandy loam (Typic Ustochrept) soil of Punjab to study the effect of organic materials and rice cultivars on methane emission from rice fields. The methane flux varied between 0.04 and 0.93 mg m(-2) hr(-1) in bare soil and transplanting of rice crop doubled the methane flux (0.07 to 2.06 mg m(-2) hr(-1)). Among rice cultivars, significantly (p < 0.05) higher amount of methane was emitted from Pusa 44 compared to PR 118 and PR 111. Application of organic materials enhanced methane emission from rice fields and resulted in increased soil organic carbon content. The greatest seasonal methane flux was observed in wheat straw amended plots (229.6 kg ha(-1)) followed by farmyard manure (111.6 kg ha(-1)), green manure (85.4 kg ha(-1)) and the least from rice straw compost amended plots (36.9 kg ha(-1)) as compared to control (21.5 kg ha(-1)). The differential effect of organic materials in enhancing methane flux was related to total carbon or C:N ratio of the material. The results showed that incorporation of humified organic matter such as rice straw compost could minimize methane emission from rice fields with co-benefits of increased soil fertility and crop productivity.  相似文献   

12.
定位试验表明:施用耐氨固氮菌能促进水稻根系对氮素的吸收,显著增加水稻产量.耐氨固氮菌具有固氮能力,但按现行的施用量则固氮水平不足30kg/hm2.在施氮水平较高的情况下。施用耐氨固氮菌能增加土壤有机质、全氮和碱解氮含量.  相似文献   

13.
稻草还田方式对双季稻田耕层土壤有机碳积累的影响   总被引:2,自引:0,他引:2  
选择南方典型双季稻田,研究不同的稻草还田方式对土壤不同层次有机碳的积累、表土碳密度、C/N比值及水稻产量的影响。结果表明,不同的稻草还田和耕作处理对水稻产量无显著影响;不同稻草还田处理的土壤有机碳和C/N均随土层加深而减小;3个稻草还田处理0-5 cm土层土壤有机碳质量分数显著高于不还田对照,其中,以高桩免耕处理最高,比无草翻耕处理提高13.8%(P〈0.01);5-10 cm土层表现为高桩翻耕处理显著高于其他处理,增加幅度为1.39-1.66 g kg-1;10-15 cm为翻耕处理(包括稻草不还田和还田)显著高于各免耕处理;稻草翻耕处理(0-15 cm)的耕层有机碳密度显著高于其他处理。因此,南方双季稻田采取稻草翻耕还田方式有利于增加土壤有机碳汇。  相似文献   

14.
Cleveland CC  Reed SC  Townsend AR 《Ecology》2006,87(2):492-503
Terrestrial biosphere-atmosphere CO2 exchange is dominated by tropical forests, so understanding how nutrient availability affects carbon (C) decomposition in these ecosystems is central to predicting the global C cycle's response to environmental change. In tropical rain forests, phosphorus (P) limitation of primary production and decomposition is believed to be widespread, but direct evidence is rare. We assessed the effects of nitrogen (N) and P fertilization on litter-layer organic matter decomposition in two neighboring tropical rain forests in southwest Costa Rica that are similar in most ways, but that differ in soil P availability. The sites contain 100-200 tree species per hectare and between species foliar nutrient content is variable. To control for this heterogeneity, we decomposed leaves collected from a widespread neotropical species, Brosimum utile. Mass loss during decomposition was rapid in both forests, with B. utile leaves losing >80% of their initial mass in <300 days. High organic matter solubility throughout decomposition combined with high rainfall support a model of litter-layer decomposition in these rain forests in which rapid mass loss in the litter layer is dominated by leaching of dissolved organic matter (DOM) rather than direct CO2 mineralization. While P fertilization did not significantly affect mass loss in the litter layer, it did stimulate P immobilization in decomposing material, leading to increased P content and a lower C:P ratio in soluble DOM. In turn, increased P content of leached DOM stimulated significant increases in microbial mineralization of DOM in P-fertilized soil. These results show that, while nutrients may not affect mass loss during decomposition in nutrient-poor, wet ecosystems, they may ultimately regulate CO2 losses (and hence C storage) by limiting microbial mineralization of DOM leached from the litter layer to soil.  相似文献   

15.
Conant RT  Steinweg JM  Haddix ML  Paul EA  Plante AF  Six J 《Ecology》2008,89(9):2384-2391
Soil C decomposition is sensitive to changes in temperature, and even small increases in temperature may prompt large releases of C from soils. But much of what we know about soil C responses to global change is based on short-term incubation data and model output that implicitly assumes soil C pools are composed of organic matter fractions with uniform temperature sensitivities. In contrast, kinetic theory based on chemical reactions suggests that older, more-resistant C fractions may be more temperature sensitive. Recent research on the subject is inconclusive, indicating that the temperature sensitivity of labile soil organic matter (OM) decomposition could either be greater than, less than, or equivalent to that of resistant soil OM. We incubated soils at constant temperature to deplete them of labile soil OM and then successively assessed the CO2-C efflux in response to warming. We found that the decomposition response to experimental warming early during soil incubation (when more labile C remained) was less than that later when labile C was depleted. These results suggest that the temperature sensitivity of resistant soil OM pools is greater than that for labile soil OM and that global change-driven soil C losses may be greater than previously estimated.  相似文献   

16.
Microbial nitrogen limitation increases decomposition   总被引:13,自引:0,他引:13  
Craine JM  Morrow C  Fierer N 《Ecology》2007,88(8):2105-2113
With anthropogenic nutrient inputs to ecosystems increasing globally, there are long-standing, fundamental questions about the role of nutrients in the decomposition of organic matter. We tested the effects of exogenous nitrogen and phosphorus inputs on litter decomposition across a broad suite of litter and soil types. In one experiment, C mineralization was compared across a wide array of plants individually added to a single soil, while in the second, C mineralization from a single substrate was compared across 50 soils. Counter to basic stoichiometric decomposition theory, low N availability can increase litter decomposition as microbes use labile substrates to acquire N from recalcitrant organic matter. This "microbial nitrogen mining" is consistently suppressed by high soil N supply or substrate N concentrations. There is no evidence for phosphorus mining as P fertilization increases short- and long-term mineralization. These results suggest that basic stoichiometric decomposition theory needs to be revised and ecosystem models restructured accordingly in order to predict ecosystem carbon storage responses to anthropogenic changes in nutrient availability.  相似文献   

17.
土壤溶解性有机质的生态环境效应   总被引:7,自引:3,他引:7  
李睿  屈明 《生态环境》2004,13(2):271-275
土壤生态环境是一个复杂的多介质多界面体系。现有的研究表明,DOM作为环境中重要的天然配位体和吸着载体,是一种非常活跃的化学物质,它将土壤中的矿物质、有机质与生物成分联系在一起,通过物理或化学作用改变金属与外源性化合物的环境行为,促进温室气体的排放,调节土壤养分流失,指示土壤质量,并对成土过程、微生物的生长代谢过程、土壤有机质分解和转化过程有着重要作用,已经成为土壤科学、生态科学和环境科学交叉领域的研究热点。文章系统地评述了DOM的组成特点及其环境效应,同时介绍了未来的研究方向及一些有待于进一步研究的问题。  相似文献   

18.
针对安徽省砂姜黑土的不良属性,在安徽蒙城砂姜黑土上进行了4年的施肥定位试验,施肥方式为年施氮量(以 N计)0、360、450、540、630、720 kg·hm-2,玉米季占55%,通过研究连续施肥措施下砂姜黑土耕层土壤活性有机质组分的变化特征,分析了单施化学氮肥对土壤有机质组分及碳库管理指数的影响。结果表明:施用化学氮肥有利于提高土壤总有机质质量分数和活性有机质质量分数,变化幅度分别为17.49~19.46、3.10~3.52 g·kg-1,化肥施用水平之间差异不显著,相比不施肥,施肥土壤的总有机质质量分数增加1.53~3.53 g·kg-1、活性有机质质量分数增加0.10~0.52 g·kg-1、稳定态有机质增加1.02~4.30 g·kg-1。处理间高活性有机质质量分数变化范围为0.46~0.62 g·kg-1,施用化肥后降低,高量氮肥与不施肥处理间差异显著(P<0.05);中活性有机质质量分数在2.21~3.25 g·kg-1之间,且与氮肥施用水平有关,年施氮量(以N计)高于540 kg·hm-2时其值增加,但各施用水平间无显著差异(P>0.05)。施氮对CMI的影响不显著,土壤总有机质增加的有机质组分主要为稳定性有机质。施氮处理的玉米籽粒产量明显高于不施氮处理,年施氮(以N计)720 kg·hm-2的玉米籽粒产量最高,达11137.90 kg·hm-2。相关性分析结果显示,3种活性有机质之间,活性有机质和高活性有机质相关性最高,关系最为密切;碳库管理指数与活性有机质呈极显著正相关,相关系数为0.910;总有机质含量与活性有机质含量显著正相关(P<0.05),与碳库管理指数无显著相关性(P>0.05);玉米籽粒产量与总有机质、活性有机质极显著正相关(P<0.01),与碳库管理指数显著相关(P<0.05)。由此可知,化学氮肥可促进砂姜黑土耕层土壤总有机质和活性有机质的提高,且二者均能够反映砂姜黑土施用化肥后的肥力变化情况;提高砂姜黑土总有机质的有机质组分主要是稳定态有机质;要提高玉米产量需要较高的氮肥用量。  相似文献   

19.
The interaction between nitrogen cycling and carbon sequestration is critical in predicting the consequences of anthropogenic increases in atmospheric CO2 (hereafter, Ca). The progressive N limitation (PNL) theory predicts that carbon sequestration in plants and soils with rising Ca may be constrained by the availability of nitrogen in many ecosystems. Here we report on the interaction between C and N dynamics during a four-year field experiment in which an intact C3/C4 grassland was exposed to a gradient in Ca from 200 to 560 micromol/mol. There were strong species effects on decomposition dynamics, with C loss positively correlated and N mineralization negatively correlated with Ca for litter of the C3 forb Solanum dimidiatum, whereas decomposition of litter from the C4 grass Bothriochloa ischaemum was unresponsive to Ca. Both soil microbial biomass and soil respiration rates exhibited a nonlinear response to Ca, reaching a maximum at approximately 440 micromol/mol Ca. We found a general movement of N out of soil organic matter and into aboveground plant biomass with increased Ca. Within soils we found evidence of C loss from recalcitrant soil C fractions with narrow C:N ratios to more labile soil fractions with broader C:N ratios, potentially due to decreases in N availability. The observed reallocation of N from soil to plants over the last three years of the experiment supports the PNL theory that reductions in N availability with rising Ca could initially be overcome by a transfer of N from low C:N ratio fractions to those with higher C:N ratios. Although the transfer of N allowed plant production to increase with increasing Ca, there was no net soil C sequestration at elevated Ca, presumably because relatively stable C is being decomposed to meet microbial and plant N requirements. Ultimately, if the C gained by increased plant production is rapidly lost through decomposition, the shift in N from older soil organic matter to rapidly decomposing plant tissue may limit net C sequestration with increased plant production.  相似文献   

20.
《Ecological modelling》2005,187(4):426-448
We present a new decomposition model of C and N cycling in forest ecosystems that simulates N mineralisation from decomposing tree litter. It incorporates a mechanistic representation of the role of soil organisms in the N mineralisation-immobilisation turnover process during decomposition. We first calibrate the model using data from decomposition of 14C-labelled cellulose and lignin and 14C-labelled legume material and then calibrate and test it using mass loss and N loss data from decomposing Eucalyptus globulus residues. The model has been linked to the plant production submodel of the G’DAY ecosystem model, which previously used the CENTURY decomposition submodel for simulating C and N cycling. The key differences between this new decomposition model and the previous one, based on the CENTURY model, are: (1) growth of microbial biomass is the process that drives N mineralisation-immobilisation, and microbial succession is simulated; (2) decomposition of litter can be N-limited, depending on soil inorganic N availability relative to N requirements for microbial growth; (3) ‘quality’ of leaf and fine root litter is expressed in terms of biochemically measurable fractions; (4) the N:C ratio of microbial biomass active in decomposing litter is a function of litter quality and N availability; and (5) the N:C ratios of soil organic matter (SOM) pools are not prescribed but are instead simulated output variables defined by litter characteristics and soil inorganic N availability. With these modifications the model is able to provide reasonable estimates of both mass loss and N loss by decomposing E. globulus leaf and branch harvest residues in litterbag experiments. A sensitivity analysis of the decomposition model to selected parameters indicates that parameters regulating the stabilisation of organic C and N, as well as those describing incorporation of soil inorganic N in Young-SOM (biochemical immobilisation of N) are particularly critical for long-term applications of the model. A parameter identifiability analysis demonstrates that simulated short-term C and N loss from decomposing litter is highly sensitive to three model parameters that are identifiable from the E. globulus litterbag data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号