首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为科学评估PM_(2.5)对生物体综合生物效应,研究建立了利用费氏弧菌检测PM_(2.5)水溶性提取液的毒性测试方法,确立了PM_(2.5)样品提取液发光细菌毒性测试实验质量控制办法。对春节烟花爆竹燃放和沙尘污染过程的PM_(2.5)实样测试表明:烟花爆竹燃放期间的PM_(2.5)样品提取液发光抑制率值与微量金属元素等有毒有害组分浓度显著相关;沙尘污染期间的PM_(2.5)样本提取液中地壳元素浓度和发光抑制率值显著不相关。  相似文献   

2.
等毒性配比法研究镉、铬和铅对淡水发光细菌的联合毒性   总被引:3,自引:0,他引:3  
当待测生物暴露在混合污染物中时,由于混合物中各组分相互影响,会产生联合毒性作用,表现为加和作用、协同作用和拮抗作用。为了深入了解重金属混合物的联合毒性对发光细菌的作用,利用淡水发光细菌——青海弧菌Q67(Vibrio qinghaiensis sp.nov-Q67)发光值的测定方法,采用联合毒性单位法,在测定了硝酸镉、重铬酸钾和硝酸铅单一毒性EC50的基础上,对硝酸镉 重铬酸钾、硝酸镉 硝酸铅、硝酸铅 重铬酸钾3种重金属二元混合物的联合毒性进行了评价。结果表明,硝酸镉 重铬酸钾、硝酸铅 重铬酸钾是拮抗作用,硝酸铅 硝酸镉是协同作用。  相似文献   

3.
利用长株潭城市群24个监测点PM_(2.5)小时监测数据,研究2013—2015年春节期间(7 d)和春节前后(14 d)PM_(2.5)污染差异及变化,并分析旅游休假活动对空气质量的影响。在去除气象条件(日降水量大于4 mm)影响后,从PM_(2.5)污染程度差异、PM_(2.5)浓度日变化差异和假日效应的空间差异3个方面分析了PM_(2.5)污染的春节假日效应。结果表明,整体上长株潭地区春节期间PM_(2.5)浓度比春节前后高12μg·m-3,但春节后(7 d)PM_(2.5)浓度比春节期间低41.5%,"节后效应"明显。由于受烟花燃放等假日活动影响,春节期间PM_(2.5)浓度在00:00—02:00时段显著上升,02:00时PM_(2.5)浓度比非春节期间高47.6%。在假日效应的空间差异方面,长沙作为游客流入地,春节期间PM_(2.5)浓度比非春节期间高33.5%,体现了人流出行和旅游活动对空气质量的显著影响。  相似文献   

4.
为探究天津市采暖季PM_(2.5)中碳组分的污染特征及来源,于2017年11月28日—2017年12月30日,分昼夜采集天津市大气中的PM_(2.5)样品,并利用热光碳分析仪测定了PM_(2.5)样品中有机碳(OC)和元素碳(EC)的质量浓度。对天津市PM_(2.5)中OC和EC的浓度变化特征进行分析,采用OC/EC最小比值法估算二次有机碳(SOC)的含量,然后利用主成分分析法(PCA)对碳组分进行来源解析,并基于后向轨迹聚类分析方法探讨区域污染传输对天津市碳组分的影响。结果表明,(1)采样期间,PM_(2.5)中OC和EC的平均质量浓度分别为15.63、4.19μg·m~(-3),分别占PM_(2.5)质量浓度的23.78%和6.38%,天津市碳组分污染仍然比较严重。另外,OC和EC的质量浓度及其占PM_(2.5)质量浓度的百分比均呈现出昼低夜高的特点。(2)OC和EC之间的相关性在白天与夜间均较强(R2分别为0.89和0.75),表明OC与EC的来源均较为一致。夜间相关系数R2较低,碳组分来源更为复杂。(3)白天SOC的估算值为5.37μg·m~(-3),占OC的38.71%;夜间SOC的估算值为8.54μg·m~(-3),占OC的48.69%,天津市存在严重的SOC污染。(4)2017年采暖季,天津市PM_(2.5)碳组分污染主要来源于汽油车尾气、道路扬尘、燃煤与生物质燃烧。与白天相比,夜间道路扬尘的贡献作用更加显著。(5)采样期间,天津市气团轨迹主要来自西北与偏北方向。不同方向的气团轨迹对PM_(2.5)中碳组分的影响存在显著差异。研究结果可为天津市制定具有针对性的大气污染控制措施以及区域间的联防联控提供科学依据。  相似文献   

5.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

6.
PM_(2.5)空间变异规律是揭示污染机制的重要基础。研究获取珠三角地区共57个监测点2013年全年PM_(2.5)小时均值监测数据,汇总后得到监测点季度均值和年均值,采用空间自相关分析理论研究不同季节PM_(2.5)浓度空间自相关性的强弱与集聚模式。结果显示,珠三角地区PM_(2.5)污染季节差异显著,冬季PM_(2.5)浓度均值是夏季的3倍。空间自相关分析表明,90 km范围内,珠三角PM_(2.5)浓度均存在正空间自相关性且尺度效应明显,空间自相关性存在城市尺度和区域尺度2次递减;春、夏、秋、冬季PM_(2.5)浓度全局Moran's I指数分别为0.542、0.752、0.602和0.628,空间自相关性由高到低依次为夏、冬、秋和春季;珠三角PM_(2.5)浓度集聚模式明显,深圳等沿海地区表现为PM_(2.5)浓度低-低集聚(L-L),而离海岸稍远的广州等地区为高-高集聚(H-H)区域。  相似文献   

7.
我国城市当前普遍存在室外大气PM_(2.5)与室内甲醛(FA)联合污染状况,二者均被报道在单独暴露下可以导致肺损伤并诱导和诱发哮喘的急性发作,但其联合污染的具体效应,以及分子机制目前尚不清楚。为探究PM_(2.5)和/或甲醛暴露对小鼠的肺损伤及其可能的机制,分别将雄性Balb/c小鼠分为以下6组:对照组,AZD8055组,PM_(2.5)组,FA组,PM_(2.5)+FA组,PM_(2.5)+FA+AZD8055组。染毒结束后,观察肺组织病理学变化;检测肺组织氧化损伤,活性氧(reactive oxygen species,ROS),还原型谷胱甘肽(glutathione,GSH)和丙二醛(malondialdehyde,MDA)的含量,DNA损伤,DNA-蛋白质交联(DNA-protein crosslink,DPC)系数和8羟基脱氧鸟苷(8-OH-d G)的含量,以及细胞凋亡、半胱氨酸天冬氨酸蛋白酶-3(Caspase-3)的含量。结果表明,当吸入气态甲醛浓度为3 mg·m-3,气道滴注PM_(2.5)浓度为2.5 mg·m L-1时,肺组织出现不同程度的支气管重塑和炎症细胞浸润。ROS显著上升,GSH显著下降,DPC、8-OH-d G以及Caspase-3都显著上升。添加AZD8055后,肺组织损伤效应更加显著。PM_(2.5)复合甲醛的暴露导致小鼠肺损伤具有协同作用,氧化应激及其下游的DNA损伤可能是甲醛联合PM_(2.5)致小鼠肺损伤的一种重要机制。  相似文献   

8.
为研究PM_(2.5)与大气污染物浓度之间的关系以及气象条件对PM_(2.5)浓度的影响,本文运用数学统计方法,对北京顺义区2016年1月—12月PM_(2.5)及大气污染物和气象要素的数据资料进行分析并建立了北京顺义区PM_(2.5)浓度的估算模型.双变量相关性分析的结果表明,PM_(2.5)浓度与PM_(10)、SO_2、NO_2、O_3以及CO等大气污染物浓度与温度、湿度、压强和风速风向等气象条件间呈现强的相关性.建立了PM_(2.5)与单因素拟合模型,其中PM_(10)、NO_2和CO与PM_(2.5)浓度拟合模型的R~2均大于0.6.识别了对PM_(2.5)浓度有显著影响的二阶、三阶交互作用的因素交叉项.综合考虑单个影响因素与影响因素间交互作用的对PM_(2.5)浓度的影响,采用因子分析方法并对提取的主成分进行回归分析,建立了拟合度R~2为0.887的PM_(2.5)浓度估算模型.  相似文献   

9.
为研究成都市冬季PM_(2.5)中碳组分的污染特征和来源,于2019年12月7—28日在成都市进行PM_(2.5)的采集,并利用热光碳分析仪和元素分析仪-同位素质谱仪分别测定了样品中有机碳(OC)和元素碳(EC)的质量浓度以及碳同位素的组成特征。结果表明,成都市PM_(2.5)、OC和EC的平均质量浓度分别为98.23、14.50、2.19μg·m~(-3);OC和EC的相关性较高(相关系数为0.80),表明OC和EC可能具有一致的来源,也有可能是具有较高的混合程度;OC/EC比值大于2.0,表明成都市冬季有二次有机碳(SOC)的形成,且SOC/OC的比值为34.48%;主成分分析结果显示,生物质燃烧、燃煤和汽油车尾气尘混合源是成都市冬季PM_(2.5)碳组分的主要来源,贡献率为59.68%;其次是柴油车尾气尘,贡献率为22.40%;碳同位素组成结果显示,成都市冬季PM_(2.5)碳组分的来源与汽油车尾气排放相关性最强,其次为C3植物燃烧;通过IsoSource模型软件进行计算,可知不同时期各污染源的贡献比例均呈现出汽油车尾气排放C3植物燃烧柴油车尾气排放燃煤C4植物燃烧地质源(农业土壤、扬尘)的规律,但相较于清洁期来说,污染期的汽油车尾气排放和C3植物燃烧污染源所占比例增大。研究结果可为成都市大气污染治理提供理论指导。  相似文献   

10.
流行病学和实验研究表明,PM_(2.5)会对呼吸系统造成损害,但毒性机制还有待深入探讨.本研究采集太原市冬季PM_(2.5),考察其对人支气管上皮细胞(BEAS-2B细胞)的线粒体损伤效应.结果表明,PM_(2.5)会造成细胞线粒体结构变化和功能异常,主要表现为三磷酸腺苷(ATP)水平和线粒体膜电位(MMP)随着PM_(2.5)浓度升高而下降.此外,线粒体功能相关因子PGC-1α、NRF-1和TFAM的蛋白表达量也随着PM_(2.5)浓度的升高呈下降趋势,并在30μg·mL~(-1)时达到最小值.这些结果提示,PM_(2.5)可以导致BEAS-2B细胞发生线粒体结构和功能性变化,进而诱发呼吸系统损伤.  相似文献   

11.
The Eulerian Chemistry-Transport Model BelEUROS was used to calculate the concentrations of airborne PM10 and PM2.5 over Europe. Both primary as well as secondary particulate matter in the respirable size-range was taken into account. Especially PM2.5 aerosols are often formed in the atmosphere from gaseous precursor compounds. Comprehensive computer codes for the calculation of gas phase chemical reactions and thermodynamic equilibria between compounds in the gas-phase and the particulate phase had been implemented into the BelEUROS-model. Calculated concentrations of PM10 and PM2.5 are compared to observations, including both the spatial and daily, temporal distribution of particulate matter in Belgium for certain monitoring locations and periods. The concentrations of the secondary compounds ammonium, nitrate and sulfate have also been compared to observed values. BelEUROS was found to reproduce the observed concentrations rather well. The model was applied to assess the contribution of emissions derived from the sector agriculture in Flanders, the northern part of Belgium, to PM10- and PM2.5-concentrations. The results demonstrate the importance of ammonia emissions in the formation of secondary particulate matter. Hence, future European emission abatement policy should consider more the role of ammonia in the formation of secondary particles.  相似文献   

12.
Ambient PM2.5 samples were collected at four sites in Xiamen, including Gulangyu (GLY), Hongwen (HW), Huli (HL) and Jimei (JM) during January, April, July and October 2013. Local source samples were obtained from coal burning power plants, industries, motor vehicles, biomass burning, fugitive dust, and sea salt for the source apportionment studies. The highest value of PM2.5 mass concentration and species related to human activities (SO4 2–, NO3 , Pb, Ni, V, Cu, Cd, organic carbon (OC) and elemental carbon (EC)) were found in the ambient samples from HL, and the highest and lowest loadings of PM2.5 and its components occurred in winter and summer, respectively. The reconstructed mass balance indicated that ambient PM2.5 consisted of 24% OM (organic matter), 23% sulfate, 14% nitrate, 9% ammonium, 9% geological material, 6% sea salt, 5% EC and 10% others. For the source profiles, the dominant components were OC for coal burning, motor vehicle, biomass burning and sea salt; SO4 2– for industry; and crustal elements for fugitive dust. Source contributions were calculated using a chemical mass balance (CMB) model based on ambient PM2.5 concentrations and the source profiles. GLY was characterized by high contributions from secondary sulfate and cooking, while HL and JM were most strongly affected by motor vehicle emissions, and biomass burning and fugitive dust, respectively. The CMB results indicated that PM2.5 from Xiamen is composed of 27.4% secondary inorganic components, 20.8% motor vehicle emissions, 11.7% fugitive dust, 9.9% sea salt, 9.3% coal burning, 5.0% biomass burning, 3.1% industry and 6.8% others.
  相似文献   

13.
A total of 168 PM10 samples were collected during the year of 2005 at eight sites in the city of Wuxi in China. Fifteen chemical elements, three water-soluble ions, total carbon and organic carbon were analyzed. Six source categories were identified and their contributions to ambient PM10 in Wuxi were estimated using a nested chemical mass balance method that reduces the effects of colinearity on the chemical mass balance model. In addition, the concentrations of secondary aerosols, such as secondary organic carbon, sulfate and nitrate, were quantified. The spatially averaged PM10 was high in the spring and winter (123 ??g·m?3 and low in the summer-fall (90 ??g·m?3). According to the result of source apportionment, resuspended dust was the largest contributor to ambient PM10, accounting for more than 50% of the PM10 mass. Coal combustion (14.6%) and vehicle exhaust (9.4%) were also significant source categories of ambient PM10. Construction and cement dust, sulfates, secondary organic carbon, and nitrates made contributions ranging between 4.1% and 4.9%. Other source categories such as steel manufacturing dust and soil dust made low contributions to ambient PM10.  相似文献   

14.
In vitro effects of Pb2+, the pyrethroid insecticides cypermethrin, fenvalerate and the syner‐gist piperonyl butoxide on sodium‐potassium‐activated adenosine triphosphatase (Na,K‐ATPase) from dog kidney were determined. Pb2+ with an estimated IC50 value of 5.2 μM was found to be a potent inhibitor of Na,K‐ATPase activity, whereas Na,K‐ATPase was less sensitive to the pyrethroids tested and piperonyl butoxide. Investigation with circular dichroism (CD) spec‐troscopy showed that inhibition occurs through conformational changes of the α‐subunit of the enzyme. The kinetic characteristics of inhibition of Na,K‐ATPase with varying substrate (ATP) concentrations as well as with varying Na+ concentrations exhibited a competitive type of inhibition with Pb2+ in the μM range. With Pb2+ alone in the enzyme assay no conformational changes of the protein could be observed which confirmed the assumption that Pb2+ can bind to the Na+ binding site of the α‐subunit. Uncompetitive type of inhibition occurred with varied K+ concentrations demonstrating that this cation binding site is not affected directly by Pb2+.

Complete reversal of Pb2+ by DTT confirms that a possible target for interaction of this heavy metal ion with Na, K‐ATPase are specific SH groups.

Synergistic effects could only be determined with higher Pb2+ concentrations of 3, 5 and 7 μM plus piperonyl butoxide while all other combinations with this heavy metal plus organic substances where of the additive type. With CD spectroscopy also only additive effects were observed. These results demonstrate that higher concentrations of piperonyl butoxide favor the binding of Pb2+ to the Na+ binding site by conformational changes of the protein.  相似文献   

15.
The relative importance of 3 different sources for biological production of nitrite in seawater was studied. Decomposition of fecal pellets of the copepod Calanus helgolandicus (at a concentration of approximately 12 g-at N/l), in seawater medium, released small amounts of ammonia over a 6 week period. It nitrifying bacteria were added to the fecal pellets nitrite was barely detectable over the same period. Decomposition of phytoplankton (present at a concentration of about 8 g-at particulate plant N/l) with added heterotrophic bacteria, released moderate amounts of ammonia over a 12 week period. If the ammonia-oxidizing bacterium Nitrosocystis oceanus was added to the decomposing algae, nitrite was produced at a rate of 0.2 g-at N/l/week. Heterotrophic nitrification was not observed when 7 open-ocean bacteria were tested for their ability to oxidize ammonia. The diatom Skeletonema costatum, either non-starved or starved of nitrogen, produced nitrite when growing with 150 or 50 g-at NO 2 - -N/l at a light intensity of about 0.01 ly/min. When nitrate in the medium was exhausted, S. costatum assimilated nitrite. If starved of vitamin B12, both non-N-starved and N-starved cells of S. costatum produced nitrite in the medium with 150 g-at NO 3 - -N/l. Nitrate was not exhausted and cell densities reached 2x105/ml due to vitamin B12 deficiency. If light intensity was reduced to 0.003 ly/min under otherwise similar conditions, cells did not grow due to insufficient light, and nitrite was not produced. In the sea, it appears that, in certain micro-environments, decomposition of particulate matter releases ammonia with its subsequent oxidation to nitrite. The amounts of these nutrients and the rate at which they are produced are dependent upon the nature of the materials undergoing decomposition and the associated bacteria. In certain other areas of the sea, where phytoplankton standing stock is high and nitrate is non-limiting, excretion by these organisms is a major source of nitrite.  相似文献   

16.
In 2004, airborne particulate matter (PM) was collected for several aerosol episodes occurring in the southern region of Taiwan. The particulate samples were taken using both a MOUDI (Micro-orifice Uniform Deposit Impactor) and a nano-MOUDI sampler. These particulate samples were analyzed for major water-soluble ionic species with an emphasis to characterize the mass concentrations and distributions of these ions in the ambient ultrafine (PM0.1, diameter <0.1 μm) and nano mode (PMnano, diameter <0.056 μm) particles. Particles collected at the sampling site (the Da-Liao station) on the whole exhibited a typical tri-modal size distribution on mass concentration. The mass concentration ratios of PMnano/PM2.5, PM0.1/PM2.5, and PM1/PM2.5 on average were 1.8, 2.9, and 71.0%, respectively. The peak mass concentration appeared in the submicron particle mode (0.1 μm < diameter <1.0 μm). Mass fractions (percentages) of the three major water-soluble ions (nitrate, sulfate, and ammonium) as a group in PMnano, PM0.1, PM1, and PM2.5 were 18.4, 21.7, 50.0, and 50.7%, respectively. Overall, results from this study supported the notion that secondary aerosols played a significant role in the formation of ambient submicron particulates (PM0.1−1). Particles smaller than 0.1 μm were essentially basic, whereas those greater than 2.5 μm were neutral or slightly acidic. The neutralization ratio (NR) was close to unity for airborne particles with diameters ranging from 0.18 to 1 μm. The NRs of these airborne particles were found strongly correlated with their sizes, at least for samples taken during the aerosol episodes under study. Insofar as this study is exploratory in nature, as only a small number of particulate samples were used, there appears to be a need for further research into the chemical composition, source contribution, and formation of the nano and ultrafine mode airborne particulates.  相似文献   

17.
Ammonia has emerged as a promising hydrogen carrier with applications as an energy source in recent years. However, in addition to being toxic, gaseous ammonia is a precursor of secondary inorganic aerosols. The concentration of ambient fine particulate matter (PM2.5) is intrinsically connected to public health. In this study, PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan, were investigated. It was assumed that 20% of the electricity consumption in Kanto Region, the most populated area in Japan, was supplied by ammonia-hydrogen energy. The PM2.5 resulted from incomplete ammonia decomposition was simulated by a chemical transport model: ADMER-PRO (modified version). Based on the incremental PM2.5 concentration, health impacts on the elderly (individuals over 65 years old) were quantitatively evaluated. The ammonia emission in this scenario increased PM2.5 by 11.7% (0.16 μg·m–3·y–1) in winter and 3.5% (0.08 μg ·m–3·y–1) in summer, resulting in 351 premature deaths per year. This study suggests that costeffective emissions control or treatment and appropriate land planning should be considered to reduce the associated health impacts of this type of energy generation. In addition, further in-depth research, including cost-benefit analysis and security standards, is needed.
  相似文献   

18.
The -N-acetyl-D-glucosaminidase (NAGase, EC 3.2.1.52) from prawn (Penaeus vannamei) was purified by extraction with 30% ethanol solution and ammonium sulfate fractionation, then chromatographed on Sephadex G-100 followed by DEAE-cellulose (DE-32) columns. The purified enzyme determined to be homogeneous by polyacrylamide gel electrophoresis (PAGE) and SDS-PAGE. The specific activity of the purified enzyme was 1,560 U mg–1. Enzyme molecular weight was determined to be 105,000 Da; it contained two subunits of the same mass (45,000 Da). The pI value was calculated to be 4.8 by isoelectric focusing. The optimum pH and optimum temperature of the enzyme for the hydrolysis of pNP--D-GlcNAc (enzyme substrate) were determined to be pH 5.2 and 45°C, respectively. The behavior of the enzyme during hydrolysis of pNP--D-GlcNAc followed Michaelis–Menten kinetics, with Km=0.254 mM and Vm=9.438 M min–1, at pH 5.2 and 37°C. The stability of the enzyme was investigated, and the results showed that the enzyme was stable in a pH range from 4.2 to 10.0 and at temperatures <40°C. The effects of metal ions on the enzyme were also studied. Li+, Na+ and K+ had no influence on enzyme activity. Mg2+, Ca2+ and Mn2+ activated the enzyme, while Ba2+, Zn2+, Co2+, Cd2+, Hg2+, Pb2+ Cu2+, Fe3+ and Al3+ showed various degrees of inhibitory effects on the enzyme.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

19.
Porphyra perforata J. Ag. was collected from a rocky land-fill site near Kitsilano Beach, Vancouver, British Columbia, Canada and was grown for 4 d in media with one of the following forms of inorganic nitrogen: NO 3 - , NH 4 + and NO 3 - plus NH 4 + and for 10 d in nitrogen-free media. Internal nitrogen accumulation (nitrate, ammonium, amino acids and soluble protein), nitrate and ammonium uptake rates, and nitrate reductase activity were measured daily. Short initial periods (10 to 20 min) of rapid ammonium uptake were common in nitrogen-deficient plants. In the case of nitrate uptake, initial uptake rates were low, increasing after 10 to 20 min. Ammonium inhibited nitrate uptake for only the first 10 to 20 min and then nitrate uptake rates were independent of ammonium concentration. Nitrogen starvation for 8 d overcame this initial suppression of nitrate uptake by ammonium. Nitrogen starvation also resulted in a decrease in soluble internal nitrate content and a transient increase in nitrate reductase activity. Little or no decrease was observed in internal ammonium, total amino acids and soluble protein. The cultures grown on nitrate only, maintained high ammonium uptake rates also. The rate of nitrate reduction may have limited the supply of nitrogen available for further assimilation. Internal nitrate concentrations were inversely correlated with nitrate uptake rates. Except for ammonium-grown cultures, internal total amino acids and soluble protein showed no correlation with uptake rates. Both internal pool concentrations and enzyme activities are required to interpret changes in uptake rate during growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号