首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.  相似文献   

2.
ABSTRACT: Since 1989, the government of Pierce County, Washington, has prepared four watershed action plans. The watersheds cover almost 800,000 acres and include about 600,000 residents and diverse land uses, from the city of Tacoma to Mount Rainier National Park. The primary purpose of these plans was to address water quality impacts from nonpoint sources of pollution and to protect beneficial uses of water. Pierce County has experienced problems such as shellfish bed closures and the Federal Clean Water Act Section 303(d) listing of local water bodies as a result of declining water quality. Pierce County achieved improvements by engaging diverse groups of stakeholders in generating solutions to nonpoint sources of water pollution through our watershed planning process. Using participatory methods borrowed from private industry, Pierce County was able to reach consensus, build trust, maximize participation, facilitate learning, encourage creativity, develop partnerships, shorten time frames for the planning processes, and increase the level of commitment participants had to implementing the plans. As a result, the earliest plans have a high rate of voluntary implementation. This indicates that the process and methodology used to develop watershed plans has a significant, if not critical, impact on their success.  相似文献   

3.
Application of game theory for a groundwater conflict in Mexico   总被引:2,自引:0,他引:2  
Exploitation of scarce water resources, particularly in areas of high demand, inevitably produces conflict among disparate stakeholders, each of whom may have their own set of priorities. In order to arrive at a socially acceptable compromise, the decision-makers should seek an optimal trade-off between conflicting objectives that reflect the priorities of the various stakeholders. In this study, game theory was applied to a multiobjective conflict problem for the Alto Rio Lerma Irrigation District, located in the state of Guanajuato in Mexico, where economic benefits from agricultural production should be balanced with associated negative environmental impacts. The short period of rainfall in this area, combined with high groundwater withdrawals from irrigation wells, has produced severe aquifer overdraft. In addition, current agricultural practices of applying high loads of fertilizers and pesticides have contaminated regions of the aquifer. The net economic benefit to this agricultural region in the short-term lies with increasing crop yields, which requires large pumping extractions for irrigation as well as high chemical loading. In the longer term, this can produce economic loss due to higher pumping costs (i.e., higher lift requirements), or even loss of the aquifer as a viable source of water. Negative environmental impacts include continued diminishment of groundwater quality, and declining groundwater levels in the basin, which can damage surface water systems that support environmental habitats. The two primary stakeholders or players, the farmers in the irrigation district and the community at large, must find an optimal balance between positive economic benefits and negative environmental impacts. In this paper, game theory was applied to find the optimal solution between the two conflicting objectives among 12 alternative groundwater extraction scenarios. Different attributes were used to quantify the benefits and costs of the two objectives, and, following generation of the Pareto frontier or trade-off curve, four conflict resolution methods were then applied.  相似文献   

4.
/ One attempt to quantify targets for rehabilitating degraded aquatic ecosystems has been through a United States-Canada program to develop and implement comprehensive remedial action plans (RAPs) to restore beneficial uses in 42 Great Lakes Areas of Concern. The International Joint Commission has facilitated agreement on listing/delisting guidelines for determining when use impairments exist in areas of concern and when uses have been restored, while federal/state/provincial governments and local stakeholders have provided leadership in establishing quantitative targets for restoring uses and in determining how to achieve them. The listing/delisting guidelines have been instrumental in helping reach agreement on problem definition (lack of agreement on problem definition has historically been used as a reason to delay action) and reaching agreement on quantitative targets for restoring uses. Quantitative, ecosystem-based targets are being used to drive the RAP process, help organizations pursue a common mission of restoring uses, and help achieve greater accountability. As a priority, the target-setting process must also recognize the importance of establishing both short- and long-term milestones in order to measure and celebrate incremental progress in restoring uses.KEY WORDS: Use impairments; Restoring uses; Quantitative targets  相似文献   

5.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   

6.
Common decision support tools and a growing body of knowledge about ecological recovery can help inform and guide large state and federal restoration programs affecting thousands of impaired waters. Under the federal Clean Water Act (CWA), waters not meeting state Water Quality Standards due to impairment by pollutants are placed on the CWA Section 303(d) list, scheduled for Total Maximum Daily Load (TMDL) development, and ultimately restored. Tens of thousands of 303(d)-listed waters, many with completed TMDLs, represent a restoration workload of many years. State TMDL scheduling and implementation decisions influence the choice of waters and the sequence of restoration. Strategies that compare these waters’ recovery potential could optimize the gain of ecological resources by restoring promising sites earlier. We explored ways for states to use recovery potential in restoration priority setting with landscape analysis methods, geographic data, and impaired waters monitoring data. From the literature and practice we identified measurable, recovery-relevant ecological, stressor, and social context metrics and developed a restorability screening approach adaptable to widely different environments and program goals. In this paper we describe the indicators, the methodology, and three statewide, recovery-based targeting and prioritization projects. We also call for refining the scientific basis for estimating recovery potential.
Paul ZephEmail:
  相似文献   

7.
An 11-year period of water quality data, collected by the Directorate of Sate Water Works of Turkey are thoroughly analyzed for the purpose of implementing water quality classes to water resources in the Meric Basin, located on the European land mass of Turkey. Water quality parameters are divided into four groups as physical, organic, inorganic, and bacteriological. The quality class of each group is evaluated by taking into account the poorest quality of any parameter in the group, after which a quality rank is assigned to the sampling station and the waterbody in question. This method of water quality classification imposed by the Turkish Water Quality Act, is then criticized with respect to a statistical approach.  相似文献   

8.
Budget changes, whether positive or negative, in water quality management agencies often mean a change in resources available for water quality monitoring. Many state agencies are currently facing monitoring budget cuts and, as a result, are reevaluating their monitoring programs. Such evaluations make use of a number of information sources, not the least of which are monitoring activities in other states. This article reports results of a survey of all fifty state water quality monitoring programs. Twenty questions were asked in the general areas of fixed-station monitoring, special studies, and biological monitoring. Each state was contacted by telephone at least twice during the survey. Fixed-station monitoring is conducted by 48 of 50 states. An average of 75 stations per state are sampled, generally on a monthly basis. There is a large variation in the way data are analyzed by the states; water quality indices and plots of concentration or loading over time are the most common methods. All but three states conduct special studies, but only seven repeat the studies on a regular basis. Special studies are generally problem specific as opposed to basin oriented. Biological monitoring is performed by 33 states; however, this is an area in which budget cuts are having a noticeable impact. In some cases, biological monitoring is being completely eliminated or suspended. Macroinvertebrate sampling is performed quarterly to biannualiy by 50% of the states; 75% of the states that sample macroinvertebrates do so annually. Periphyton sampling is performed by 33% of the states. Over 50% of the states are in the process of revising, or have revised, their monitoring program during the past five years. However, only four states had a detailed rationale and operating procedure for the entire monitoring system. Results of the survey are, therefore, averages of existing monitoring programs. Average results do not necessarily represent ideal situations, but do give an indication of how states are coping with their monitoring responsibilities.  相似文献   

9.
The US Environmental Protection Agency’s (EPA’s) Total Maximum Daily Loads (TMDL) program promotes nationally consistent approaches for documenting the progress in restoring impaired waters. EPA’s TMDL program provides tracking systems comprising both database and geographic information systems (GIS) mapping components. The GIS mapping is implemented using the National Hydrography Dataset (NHD). The EPA and the US Geological Survey have developed an enhanced NHD product (NHDPlus) that is applied in this study to define an interstate waters framework for the conterminous United States. This NHDPlus-based framework provides an efficient watershed-oriented approach for selecting interstate waters. Greater consistency in approaches for interstate waters is essential for providing improved techniques for integrated assessment and management programs. Improved analysis tools for interstate waters are clearly important from a federal perspective. Insights based on tools for federal interstate waters are also of interest for state water quality agencies when they deal with complicated interjurisdictional challenges that can require leveraging support from a wide range of stakeholders. Summaries are provided on the degree of consistency documented for inland waters where states have provided TMDL listing GIS information for shared interstate NHD reaches, and summaries are provided on the patterns for interstate assessments organized according to the ecoregions developed for EPA’s Wadeable Streams Assessment. The relevance of this interstate waters framework in leveraging the TMDL program to provide enhanced support for watershed oriented management approaches is also explored.  相似文献   

10.
ABSTRACT: Six new techniques have been developed for lake watershed analysis and water resource management. The techniques are for determining: (1) watershed land use intensity with reference to water quality, (2) lake vulnerability, (3) water quality, (4) watershed carrying capacity, (5) the economic value of the lake, and (6) the potential of undeveloped lake-shore. These analyses are designed for use by rural planning commissions with guidance and assistance from state agencies and the state university. The comprehensive rural watershed land and water use plan developed by this procedure is inexpensive in time and money, understandable by the layman, and scientificially sound. It is based on presently available information. This water resource planning procedure has been demonstrated in several town planning projects. It is suggested that this method, or modification of it, could be adopted in all rural states by action by a few administrators and without any new enabling or appropriations legislation.  相似文献   

11.
The conjunctive use of surface and groundwater resources is one alternative for optimal use of available water resources in arid and semiarid regions. The optimization models proposed for conjunctive water allocation are often complicated, nonlinear, and computationally intensive, especially when different stakeholders are involved that have conflicting interests. In this article, a new conflict-resolution methodology developed for the conjunctive use of surface and groundwater resources using Nondominated Sorting Genetic Algorithm II (NSGA-II) and Young Conflict-Resolution Theory (YCRT) is presented. The proposed model is applied to the Tehran aquifer in the Tehran metropolitan area of Iran. Stakeholders in the study area have conflicting interests related to water supply with acceptable quality, pumping costs, groundwater quality, and groundwater table fluctuations. In the proposed methodology, MODFLOW and MT3D groundwater quantity and quality simulation models are linked with the NSGA-II optimization model to develop Pareto fronts among the objectives. The best solutions on the Pareto fronts are then selected using YCRT. The results of the proposed model show the significance of applying an integrated conflict-resolution approach to conjunctive use of surface and groundwater resources in the study area.  相似文献   

12.
ABSTRACT: While significant nonpoint source (NIPS) pollution control progress has been made since passage of Section 319 in the 1987 Water Quality Act, existing federal legislation does not provide for the most timely and cost-effective NIPS pollution reduction. In this paper, we use findings from the Rural Clean Water Program and other nationwide agricultural NIPS pollution control programs, building on legislative history to recommend a coordinated and efficient direction for agricultural water quality legislation. A collaborative framework should be established to accomplish the goals of the Clean Water Act (CWA), Coastal Zone Management Act (CZMA), and the Conservation Title of the Farm Bill. Valuable elements of the 1990 CZMA amendments that created a coastal NIPS program should be subsumed into the CWA. The CWA should reemphasize use of receiving water quality criteria and standards and should allow states flexibility to tailor basin-scale NPS program implementation to local needs. Implementation should involve targeting of NIPS pollution control efforts to critical land treatment areas and use of systems of best management practices to address these targeted water quality problems. The 1995 Farm Bill should reorient production incentives toward water quality to support the collaborative framework, implementing ecologically sound source reduction principles. The Farm Bill and the CWA should contain interrelated provisions for voluntary, incentive-assisted producer participation and fallback regulatory measures. Such coordinated national water quality and Farm Bill legislation that recognizes the need for flexibility in state implementation is supported as the most rational and cost-effective means of attaining water quality goals.  相似文献   

13.
In 2000, the Global Water Partnership (GWP) as the main advocate of the concept of Integrated Water Resources Management (IWRM), proposed a definition that is now the reference, despite the ambiguity that persists in its interpretation. At the 2002 World Summit on Sustainable Development, the State representatives committed themselves to launch "plans for integrated water resources management and water efficiency by 2005". Some states immediately honoured this commitment by adopting new national water policies inspired by IWRM principles. Do these implementation plans respond to all the challenges of the IWRM? Or have these states simply reorganized their water resource policies to give an impression of conforming to the framework? In response to these questions, we present a history of IWRM and its conflicting interpretations followed by a case study of reforms enacted in Burkina Faso, to highlight some problems which are inherent to IWRM and how IWRM was transposed on a national scale.  相似文献   

14.
Threshold concentrations for biological impairment by nutrients are difficult to quantify in lotic systems, yet States and Tribes in the United States are charged with developing water quality criteria to protect these ecosystems from excessive enrichment. The analysis described in this article explores the use of the ecosystem model AQUATOX to investigate impairment thresholds keyed to biological indexes that can be simulated. The indexes selected for this exercise include percentage cyanobacterial biomass of sestonic algae, and benthic chlorophyll a. The calibrated model was used to analyze responses of these indexes to concurrent reductions in phosphorus, nitrogen, and suspended sediment in an enriched upper Midwestern river. Results suggest that the indexes would respond strongly to changes in phosphorus and suspended sediment, and less strongly to changes in nitrogen concentration. Using simulated concurrent reductions in all three water quality constituents, a total phosphorus concentration of 0.1 mg/l was identified as a threshold concentration, and therefore a hypothetical water quality criterion, for prevention of both excessive periphyton growth and sestonic cyanobacterial blooms. This kind of analysis is suggested as a way to evaluate multiple contrasting impacts of hypothetical nutrient and sediment reductions and to define nutrient criteria or target concentrations that balance multiple management objectives concurrently. Any opinions, findings, conclusions, or recommendations expressed in this article are those of the authors alone, and do not necessarily reflect the views of the U.S. Environmental Protection Agency or of the U.S. Government.  相似文献   

15.
张智  杨骏骅 《四川环境》2005,24(6):83-86
城市水景水体的修复和保持是水资源保护与可持续利用研究中的热点之一,重庆市双龙湖是典型的城市水景水体,治理前富营养化状况严重。双龙湖治理采取了综合整治的方案,包括污水截流工程、雨水截流及净化工程、湖水复氧循环工程、湖水的生态治理工程和污泥固化工程等。截断外源污染,抑制内源污染,有效的控制了水体的富营养化。经过治理,双龙湖水体水质明显提高,由治理前的劣Ⅴ类水质恢复到Ⅳ类水质,满足景观水要求。双龙湖水环境综合整治为我国,特别是三峡库区众多的城市水体的修复和保持积累经验,为城市水景水体富营养化的防治提供技术和方法上的借鉴。  相似文献   

16.
ABSTRACT: In 2002, Wyoming became the first state to complete development of a statewide 1:24,000‐scale Watershed Boundary Dataset (WBD) under the new Federal Standards for Delineation of Hydrologic Unit Boundaries. The product was developed through the coordinated efforts of numerous state, federal, and local entities both within Wyoming and in neighboring states. Development of a comprehensive, standardized hydrologic unit boundary dataset in a “headwaters” state such as Wyoming poses a number of unique challenges. This paper details the WBD's development in Wyoming, highlighting technical methodology development and interagency coordination strategies. Evolution of the WBD standard is reviewed, addressing inconsistencies between definitions for hydro‐logic units and “true” watershed delineations. While automated methods are improving, manual and semi‐automated techniques continue to serve as valuable approaches to hydrologic unit boundary delineation given the quality of digital terrain models and the multijurisdictional nature of watershed based management. This case study provides insight on future development and maintenance of the WBD within and across other states and regions of the country and on opportunities for linking the WBD to related water resource geospatial data products like the National Hydrography Dataset.  相似文献   

17.
ABSTRACT: The current 201 study by the Bergen County Sewer Authority illustrates possibilities for improving the currently defined relationships between 201, 208 and 303 studies. The Bergen County Sewer Authority serves 115 square miles in northeast New Jersey, providing sewerage service to 507,000 people in 43 municipalities. Its STP discharges to the Hackensack River, a tidal estuary recently classified as Water Quality Limited, and which receives significant non-plant loading. The subject 201 study is concurrent with 208 and 303 planning by NJDEP. Preliminary evaluations show that detailed 201 work can affect the conclusions of 303 and 208 studies, and that a wider (environmental - social as well as economic) interpretation of cost-effectiveness can demand re-examination of prior assumptions and decisions, a task not typically part of 208–303 work. Increased flexibility is needed in applying 303 and 208 recommendations to defining 201 studies and NPDES permit criteria, particularly in analysis of water use objectives, water quality parameters and future flows, loadings and facility costs. Further, perception of alternatives can be clarified by broadening analysis of costs and control and plant strategies. Inclusion of 201 planning at all stages of regional planning can synergistically improve the total planning process.  相似文献   

18.
The planning and execution of water quality management programs requires careful collection and analysis of data coupled with a systematic review and analysis of programmatic success. The environmental audit is a tool which facilitates improved water quality planning and management. This article demonstrates the utility of the environmental audit by reviewing portions of a comprehensive review of the water quality management program for the state of Idaho. The audit is a tool which forces careful design of a sampling program before data are collected. In the audit approach, program objectives are clearly stated prior to initiation of sampling. Stated objectives are also evaluated regularly to identify tension points, that is, conflicts between expectations and reality. In the example taken from Idaho, a management review team followed a directive to redesign the water quality monitoring program. We present a summary of the redesign as proposed by that team, to illustrate the results of a typical review of monitoring programs. That summary is followed by an example of how the proposed program would differ if the audit approach had been used. The two approaches offered both coincident and conflicting recommendations. Management review team and audit recommendations for lake sampling programs were similar even though a different process was used to develop the recommendations. The most striking contrast between the two results lies in the review team's approach to the problem. The directives followed, and the team's responses, concentrate on tools, such as increasing biological monitoring or reliance on monthly BWMP stations. In contrast, the audit results stress addressing management questions for which clear objectives have been stated, depending on specific tools only as needed to meet stated objectives. Although the audit does integrate externalities in its structure, it is little affected by economic or political influences. A major strength of the audit approach is its ability to provide defensible data for management decision making.  相似文献   

19.
ABSTRACT: The Cheat River of West Virginia is impaired by acid mine drainage (AMD). Fifty‐five of its river segments were placed on the 303(d) list, which required calculations of total maximum daily load (TMDL) to meet the water quality criteria for pH, total iron, aluminum, manganese, and zinc. An existing watershed model was enhanced to simulate AMD as nonpoint source load. The model divided a watershed into a network of catchments and river segments. Each catchment was divided into soil layers, which could contain pyrite, calcite and other minerals. A kinetic expression was used to simulate pyrite oxidation as a function of oxygen in the soil voids. Oxygen in the soil voids was consumed by pyrite oxidation and replenished by earth breathing. The by‐products of pyrite oxidation were calculated according to its mass action equations. Chemical equilibrium was used to account for the speciation of ferrous and ferric irons and precipitation of metal hydroxides. Simulated hydrology and water quality were compared to available data. The USEPA used the calibrated model to calculate the TMDLs in the Cheat River Watershed.  相似文献   

20.
ABSTRACT: Statutory and case law at the state level provide critical legal frameworks for water management. As many state governments struggle to improve efficiency in water management and resolve conflicts over water usage, they must continually assess the efficacy of their state water law. Most states have water laws that are disconnected and overlapping. This article presents a methodology to assess state water law and take first steps toward a comprehensive state water resources act. The methodology is driven by issues and conflicts in water management. It synthesizes management and legal analyses into a process that incorporates the diverse perspectives of state water stakeholders. The results of the analysis are identification of management issues, profiles of state water law, and explorations of legal options that are available to the state government. Illinois is provided as a case study for this methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号