首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
A total maximum daily load for the Chesapeake Bay requires reduction in pollutant load from sources within the Bay watersheds. The Conestoga River watershed has been identified as a major source of sediment load to the Bay. Upland loads of sediment from agriculture are a concern; however, a large proportion of the sediment load in the Conestoga River has been linked to scour of legacy sediment associated with historic millpond sites. Clarifying this distinction and identifying specific segments associated with upland vs. channel sources has important implications for future management. In order to address this important question, we combined the strengths of two widely accepted watershed management models — Soil and Water Assessment Tool (SWAT) for upland agricultural processes, and Hydrologic Simulation Program FORTRAN (HSPF) for instream fate and transport — to create a novel linked modeling system to predict sediment loading from critical sources in the watershed including upland and channel sources, and to aid in targeted implementation of management practices. The model indicates approximately 66% of the total sediment load is derived from instream sources, in agreement with other studies in the region and can be used to support identification of these channel source segments vs. upland source segments, further improving targeted management. The innovated linked SWAT‐HSPF model implemented in this study is useful for other watersheds where both upland agriculture and instream processes are important sources of sediment load.  相似文献   

2.
ABSTRACT: Median concentrations and instantaneous yields of alachlor, metolachlor, atrazine, cyanazine, and simazine were generally highest at sites in the Lower Susquehanna River Basin and in agricultural subbasins. Instantaneous herbicide yields are related to land use, hydrogeologic setting, streamflow yield, and agricultural row cropping practices. The significance of these relations may be affected by the interdependence of the factors. The percentage of basin area planted in corn is the most influential factor in the prediction of herbicide yield. Instantaneous yields of all five herbicides measured in June 1994 related poorly to averaged 1990–94 herbicide use. Annually averaged herbicide-use data are too general to use as a predictor for short-term herbicide yields. An evaluation of factors affecting herbicide yields could be refined with more-current land use and land cover information and a more accurate estimate of the percentage of basin area planted in corn. Factors related to herbicide yields can be used to predict herbicide yields in other basins within the Chesapeake Bay watershed and to develop an estimate of herbicide loads to Chesapeake Bay.  相似文献   

3.
The Phase 5.3 Watershed Model simulates the Chesapeake watershed land use, river flows, and the associated transport and fate of nutrient and sediment loads to the Chesapeake Bay. The Phase 5.3 Model is the most recent of a series of increasingly refined versions of a model that have been operational for more than two decades. The Phase 5.3 Model, in conjunction with models of the Chesapeake airshed and estuary, provides estimates of management actions needed to protect water quality, achieve Chesapeake water quality standards, and restore living resources. The Phase 5.3 Watershed Model tracks nutrient and sediment load estimates of the entire 166,000 km2 watershed, including loads from all six watershed states. The creation of software systems, input datasets, and calibration methods were important aspects of the model development process. A community model approach was taken with model development and application, and the model was developed by a broad coalition of model practitioners including environmental engineers, scientists, and environmental managers. Among the users of the Phase 5.3 Model are the Chesapeake watershed states and local governments, consultants, river basin commissions, and universities. Development and application of the model are described, as well as key scenarios ranging from high nutrient and sediment load conditions if no management actions were taken in the watershed, to low load estimates of an all‐forested condition.  相似文献   

4.
Watershed planning groups and action agencies seek to understand how lake water quality responds to changes in watershed management. This study developed and demonstrated the applicability of an integrated modeling approach for providing this information. An integrated model linking watershed conditions to water-quality of the receiving lake incorporated the following components: (1) an event-based AGNPS model to estimate watershed pollutant losses; (2) annualization of AGNPS results to produce annual lake pollutant loadings; (3) a base flow separation package, SAM, to estimate base flow; (4) estimates of nutrients in base flow and point sources; and (5) linkage of watershed loadings directly to EUTROMOD lake water quality algorithms. Results are presented for Melvern Lake, a 28-km2 multipurpose reservoir with a 900-km2 agricultural watershed in east central Kansas. Reasonable estimates of current lake quality were attained using an average phosphorus availability factor of 31 percent to calibrate model results to measured in-lake phosphorus. Comparison of a range of possible scenarios, including all cropland changed to no-till (best case) and all CRP and good-condition grasslands changed to cropland (worst case), indicated only a (4 percent change for in-lake phosphorus and a (2 percent change for chlorophyll a. These results indicated that this watershed is not sensitive to projected changes in land use and management.  相似文献   

5.
ABSTRACT: A 155,947 ha portion of the Shenango River watershed in western Pennsylvania was evaluated as to the potential impact of agriculture drainage on water quality. Approximately a third of the area is being used as either cropland or pasture with approximately an equal percentage in forest lands. Eleven subwatersheds were evaluated as to their potential for nonpoint source pollution according to the criteria established by the Pennsylvania Department of Environmental Resources for the Chesapeake Bay Pollution Abatement Program. The individual components and overall rating for each subwatershed were then evaluated as to their correlation with four water quality variables based on 104 samples collected at 26 sampling stations throughout the watershed. There was a significant correlation between the overall rating factor for each subwatershed and each of the four water quality variables. In general, the watershed delivery factor, animal nutrient factor, and management factors were correlated with fecal coliform and phosphorus in the receiving streams, whereas the ground water delivery factor appeared to be more important in determining nitrate concentrations in these streams. These results indicate that manure and nutrient management, along with the exclusion of livestock from streams and the enhancement and/or replacement of riparian wetlands, are important approaches in reducing agricultural impacts in fresh water ecosystems.  相似文献   

6.
This article analyzes the correlations of the observed and modeled light attenuation coefficient, Kd, with in situ total suspended solids (TSS) and chlorophyll‐a concentrations in Chesapeake Bay (CB) tidal waters, and with sediment and nutrient loads from the Chesapeake watershed. Light attenuation is closely related to in situ TSS and chlorophyll‐a concentrations, however, the strength of the correlation differs among the CB segments. There are distinct differences between saline and tidal fresh segments in the main Bay, but less distinction among saline and tidal fresh segments in the tidal tributaries. The correlation between Kd with sediment and nutrient loads is complicated by the lag times of TSS and the chlorophyll‐a responses to reductions in nutrient and sediment loads from the watershed, and also due to the diverse load sources. Three sets of model sensitivity scenarios were performed with: (1) differential sediment and nutrient loads; (2) selective sediment source types; and (3) geographically isolated inputs. The model results yield similar findings as those based on observed data and provide information regarding the effect of sediment on specific water bodies. Based on the model results a method was developed to determine sediment and nutrient load reductions needed to achieve the water clarity standards of the CB segments.  相似文献   

7.
Application of integrated Chesapeake Bay models of the airshed, watershed, and estuary support air and water nitrogen controls in the Chesapeake. The models include an airshed model of the Mid‐Atlantic region which tracks the estimated atmospheric deposition loads of nitrogen to the watershed, tidal Bay, and adjacent coastal ocean. The three integrated models allow tracking of the transport and fate of nitrogen air emissions, including deposition in the Chesapeake watershed, the subsequent uptake, transformation, and transport to Bay tidal waters, and their ultimate influence on Chesapeake water quality. This article describes the development of the airshed model, its application to scenarios supporting the Chesapeake Total Maximum Daily Load (TMDL), and key findings from the scenarios. Key findings are that the atmospheric deposition loads are among the largest input loads of nitrogen in the watershed, and that the indirect nitrogen deposition loads to the watershed, which are subsequently delivered to the Bay are larger than the direct loads of atmospheric nitrogen deposition to Chesapeake tidal waters. Atmospheric deposition loads of nitrogen deposited in coastal waters, which are exchanged with the Chesapeake, are also estimated. About half the atmospheric deposition loads of nitrogen originate from outside the Chesapeake watershed. For the first time in a TMDL, the loads of atmospheric nitrogen deposition are an explicit part of the TMDL load reductions.  相似文献   

8.
Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high.  相似文献   

9.
Abstract: We present a simple modular landscape simulation model that is based on a watershed modeling framework in which different sets of processes occurring in a watershed can be simulated separately with different models. The model consists of three loosely coupled submodels: a rainfall‐runoff model (TOPMODEL) for runoff generation in a subwatershed, a nutrient model for estimation of nutrients from nonpoint sources in a subwatershed, and a stream network model for integration of point and nonpoint sources in the routing process. The model performance was evaluated using monitoring data in the watershed of the Patuxent River, a tributary to the Chesapeake Bay in Maryland, from July 1997 through August 1999. Despite its simplicity, the landscape model predictions of streamflow, and sediment and nutrient loads were as good as or better than those of the Hydrological Simulation Program‐Fortran model, one of the most widely used comprehensive watershed models. The landscape model was applied to predict discharges of water, sediment, silicate, organic carbon, nitrate, ammonium, organic nitrogen, total nitrogen, organic phosphorus, phosphate, and total phosphorus from the Patuxent watershed to its estuary. The predicted annual water discharge to the estuary was very close to the measured annual total in terms of percent errors for both years of the study period (≤2%). The model predictions for loads of nutrients were also good (20‐30%) or very good (<20%) with exceptions of sediment (40%), phosphate (36%), and organic carbon (53%) for Year 1.  相似文献   

10.
Applications of Total Maximum Daily Load (TMDL) criteria for complex estuarine systems like Chesapeake Bay have been limited by difficulties in estimating precisely how changes in input loads will impact ambient water quality. A method to deal with this limitation combines the strengths of the Chesapeake Bay's Water Quality Sediment Transport Model (WQSTM), which simulates load response, and the Chesapeake Bay Program's robust historical monitoring dataset. The method uses linear regression to apply simulated relative load responses to historical observations of water quality at a given location and time. Steps to optimize the application of regression analysis were to: (1) determine the best temporal and spatial scale for applying the WQSTM scenarios, (2) determine whether the WQSTM method remained valid with significant perturbation from calibration conditions, and (3) evaluate the need for log transformation of both dissolved oxygen (DO) and chlorophyll a (CHL) datasets. The final method used simple linear regression at the single month, single WQSTM grid cell scale to quantify changes in DO and CHL resulting from simulated load reduction scenarios. The resulting linear equations were applied to historical monitoring data to produce a set of “scenario‐modified” DO or CHL concentration estimates. The utility of the regression method was validated by its ability to estimate progressively increasing attainment in support of the 2010 Chesapeake Bay TMDL.  相似文献   

11.
Brakebill, John W., Scott W. Ator, and Gregory E. Schwarz, 2010. Sources of Suspended-Sediment Flux in Streams of the Chesapeake Bay Watershed: A Regional Application of the SPARROW Model. Journal of the American Water Resources Association (JAWRA) 46(4): 757-776. DOI: 10.1111/j.1752-1688.2010.00450.x Abstract: We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain.  相似文献   

12.
ABSTRACT: Point‐nonpoint trading has been suggested as a relatively efficient approach for reducing nutrient pollution in the Chesapeake Bay and elsewhere. However, relatively little economic research has examined the design of trading programs involving nonpoint sources. The purpose of this paper is to investigate the economics of several fundamental design choices for point‐nonpoint trading programs. The Susquehanna River Basin (SRB) in Pennsylvania as an example, although many of the insights should generally apply to other regions as well.  相似文献   

13.
We used statistical models to provide the first empirical estimates of riparian buffer effects on the cropland nitrate load to streams throughout the Chesapeake Bay watershed. For each of 1,964 subbasins, we quantified the 1990 prevalence of cropland and riparian buffers. Cropland was considered buffered if the topographic flow path connecting it to a stream traversed a streamside forest or wetland. We applied a model that predicts stream nitrate concentration based on physiographic province and the watershed proportions of unbuffered and buffered cropland. We used another model to predict annual streamflow based on precipitation and temperature, and then multiplied the predicted flows and concentrations to estimate 1990 annual nitrate loads. Across the entire Chesapeake watershed, croplands released 92.3 Gg of nitrate nitrogen, but 19.8 Gg of that was removed by riparian buffers. At most, 29.4 Gg more might have been removed if buffer gaps were restored so that all cropland was buffered. The other 43.1 Gg of cropland load cannot be addressed with riparian buffers. The Coastal Plain physiographic province provided 52% of the existing buffer reduction of Bay‐wide nitrate loads and 36% of potential additional removal from buffer restoration in cropland buffer gaps. Existing and restorable nitrate removal in buffers were lower in the other three major provinces because of less cropland, lower buffer prevalence, and lower average buffer nitrate removal efficiency.  相似文献   

14.
We used a GIS-based approach to examine the influence of road density and physical watershed features (watershed size, wetland cover, and bedrock type) on water quality in coastal marshes of Georgian Bay, Ontario. We created a GIS that included landscape information and water-quality data from a 9-year synoptic survey of 105 coastal marshes covering 28 quaternary watersheds. Multiple regressions and partial correlations were used to discern confounding effects of human-induced (road density) versus natural physical watershed determinants of water quality. Road density was the dominant factor influencing many water quality variables, showing positive correlations with specific conductivity (COND), total suspended solids (TSS), and inorganic suspended solids (ISS) and a negative correlation with overall Water Quality Index scores. Road density also showed positive correlations with total nitrate nitrogen (TNN) and total phosphorus (TP). By comparison, larger watershed area was the main factor leading to elevated TP concentrations. The proportion of the watershed occupied by wetlands explained the largest amount of variation in TNN concentrations (negative correlation) and was also negatively correlated with COND and positively correlated with TSS and ISS when we controlled for road density. Bedrock type did not have a significant effect in any of the models. Our findings suggest that road density is currently the overriding factor governing water quality of coastal marshes in Georgian Bay during the summer low-flow period. We recommend that natural variation in physical watershed characteristics be considered when developing water quality standards and management practices for freshwater coastal areas.  相似文献   

15.
ABSTRACT: We measured annual discharges of water, sediments, and nutrients from 10 watersheds with differing proportions of agricultural lands in the Piedmont physiographic province of the Chesapeake Bay drainage. Flow-weighted mean concentrations of total N, nitrate, and dissolved silicate in watershed discharges were correlated with the proportion of cropland in the watershed. In contrast, concentrations of P species did not correlate with cropland. Organic P and C correlated with the concentration of suspended particles, which differed among watersheds. Thus, the ratio of N:P:Si in discharges differed greatly among watersheds, potentially affecting N, P or Si limitation of phytoplankton growth in the receiving waters. Simple regression models of N discharge versus the percentage of cropland suggest that croplands discharge 29–42 kg N ha-1 yr-1 and other lands discharge 1.2–5.8 kg N ha-1 yr-1. We estimated net anthropogenic input of N to croplands and other lands using county level data on agriculture and N deposition from the atmosphere. For most of the study watersheds, N discharge amounted to less than half of the net anthropogenic N.  相似文献   

16.
Understanding spatial variability in contaminant fate and transport is critical to efficient regional water‐quality restoration. An approach to capitalize on previously calibrated spatially referenced regression (SPARROW) models to improve the understanding of contaminant fate and transport was developed and applied to the case of nitrogen in the 166,000 km2 Chesapeake Bay watershed. A continuous function of four hydrogeologic, soil, and other landscape properties significant (α = 0.10) to nitrogen transport from uplands to streams was evaluated and compared among each of the more than 80,000 individual catchments (mean area, 2.1 km2) in the watershed. Budgets (including inputs, losses or net change in storage in uplands and stream corridors, and delivery to tidal waters) were also estimated for nitrogen applied to these catchments from selected upland sources. Most (81%) of such inputs are removed, retained, or otherwise processed in uplands rather than transported to surface waters. Combining SPARROW results with previous budget estimates suggests 55% of this processing is attributable to denitrification, 23% to crop or timber harvest, and 6% to volatilization. Remaining upland inputs represent a net annual increase in landscape storage in soils or biomass exceeding 10 kg per hectare in some areas. Such insights are important for planning watershed restoration and for improving future watershed models.  相似文献   

17.
Non-point-source (NPS) pollution remains the primary source of stream impairment in the United States. Many problems such as eutrophication, sedimentation, and hypoxia are linked with NPS pollution which reduces the water quality for aquatic and terrestrial organisms. Increasingly, NPS pollution models have been used for landscape-scale pollution assessment and conservation strategy development. Our modeling approach functions at a scale between simple landscape-level assessments and complex, data-intensive modeling by providing a rapid, landscape-scale geographic information system (GIS) model with minimal data requirements and widespread applicability. Our model relies on curve numbers, literature-derived pollution concentrations, and land status to evaluate total phosphorus (TP), total nitrogen (TN), and suspended solids (SS) at the reach scale. Model testing in the Chesapeake Bay watershed indicated that predicted distributions of water quality classes were realistic at the reach scale, but precise estimates of pollution concentrations at the local scale can have errors. Application of our model in the tributary watersheds along Lake Ontario suggested that it is useful to managers in watershed planning by rapidly providing important information about NPS pollution conditions in areas where large data gaps exist, comparisons among stream reaches across numerous watersheds are required, or regional assessments are sought.  相似文献   

18.
Chesapeake Bay has been the subject of intensive research on cultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce controllable sources of nitrogen (N) and phosphorous (P) by 40% by the year 2000, although the causes and effects of eutrophication were incompletely known. Subsequent research, modeling, and monitoring have shown that: (i) the estuarine ecosystem had been substantially altered by increased loadings of N and P of approximately 7- and 18-fold, respectively; (ii) hypoxia substantially increased since the 1950s; (iii) eutrophication was the major cause of reductions in submerged vegetation; and (iv) reducing nutrient sources by 40% would improve water quality, but less than originally thought. Strong public support and political commitment have allowed the Chesapeake Bay Program to reduce nutrient inputs, particularly from point sources, by 58% for P and 28% for N. However, reductions of nonpoint sources of P and N were projected by models to reach only 19% and 15%, respectively, of controllable loadings. The lack of reductions in nutrient concentrations in some streams and tidal waters and field research suggest that soil conservation-based management strategies are less effective than assumed. In 1997, isolated outbreaks of the toxic dinoflagellate Pfiesteria piscicida brought attention to the land application of poultry manure as a contributing factor to elevated soil P and ground water N concentrations. In addition to developing more effective agricultural practices, emerging issues include linking eutrophication and living resources, reducing atmospheric sources of N, enhancing nutrient sinks, controlling sprawling suburban development, and predicting and preventing harmful algal blooms.  相似文献   

19.
/ Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients, much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils, RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater, sediment in surface runoff, and total N in both surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment, sustainability, and management are also discussed.KEY WORDS: Riparian forest buffers; Chesapeake Bay; Nonpoint source pollution; Nitrogen; Phosphorus; Sediment  相似文献   

20.
Understanding trends in stream chemistry is critical to watershed management, and often complicated by multiple contaminant sources and landscape conditions changing over varying time scales. We adapted spatially referenced regression (SPARROW) to infer causes of recent nutrient trends in Chesapeake Bay tributaries by relating observed fluxes during 1992, 2002, and 2012 to contemporary inputs and watershed conditions. The annual flow‐normalized nitrogen flux to the bay from its watershed declined by 14% to 127,000 Mg (metric tons) between 1992 and 2012, due primarily (more than 80% of the decline) to reduced point sources. The remainder of the decline was due to reduced atmospheric deposition (13%) and urban nonpoint sources. Agricultural inputs, which contribute most nitrogen to the bay, changed little, although trends in the average nitrogen yield (flux per unit area) from cropland and pasture to streams in some settings suggest possible effects of evolving nutrient applications or other land management practices. Point sources of phosphorus to local streams declined by half between 1992 and 2012, while nonpoint inputs were relatively unchanged. Annual phosphorus delivery to the bay increased by 9% to 9,570 Mg between 1992 and 2012, however, due mainly to reduced retention in the Susquehanna River at Conowingo Reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号