首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.  相似文献   

2.
Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( L.) and soybean [ (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( L.- L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( ≤ 0.05) than the losses of atrazine (21.4x), alachlor (3.5x), and linuron (8.7x) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 μg L, much greater than its 3 μg L MCL. Likewise, annual, flow-weighted alachlor concentration (MCL = 2 μg L) was as high as 11.2 and 4.9 μg L in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 μg L MCL and the highest, annual, flow-weighted concentration was 3.9 μg L. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality.  相似文献   

3.
Conservation tillage can reduce soil loss; however, the residual herbicides normally used to control weeds are often detected in surface runoff at high levels, particularly if runoff-producing storms occur shortly after application. Therefore, we measured losses of alachlor, atrazine, linuron, and metribuzin from seven small (0.45-0.79-ha) watersheds for 9 yr (1993-2001) to investigate whether a reduced-input system for corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] production with light disking, cultivation, and half-rate herbicide applications could reduce losses compared with chisel and no-till. As a percentage of application, annual losses were highest for all herbicides for no-till and similar for chisel and reduced-input. Atrazine was the most frequently detected herbicide and yearly flow-weighted concentrations exceeded the drinking water standard of 3 microg L(-1) in 20 out of 27 watershed years that it was applied. Averaged for 9 corn yr, yearly flow-weighted atrazine concentrations were 26.3, 9.6, and 8.3 microg L(-1) for no-till, chisel, and reduced-input, respectively. Similarly, flow-weighted concentrations of alachlor exceeded the drinking water standard of 2 microg L(-1) in 23 out of 54 application years and in all treatments. Thus, while banding and half-rate applications as part of a reduced-input management practice reduced herbicide loss, concentrations of some herbicides may still be a concern. For all watersheds, 60 to 99% of herbicide loss was due to the five largest transport events during the 9-yr period. Thus, regardless of tillage practice, a small number of runoff events, usually shortly after herbicide application, dominated herbicide transport.  相似文献   

4.
Minimizing herbicide runoff and mobility in the soil and thus potential contamination of water resources is a national concern. Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine] dynamics in surface soils and in runoff waters were studied on six 0.2-ha sugarcane (Saccharum spp.) plots of a Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept) during three growing seasons under different best management practices. Metribuzin was applied in the spring as a postemergence herbicide and atrazine was applied following winter harvest. Both herbicides were applied on top of the sugarcane rows as 0.6- or 0.9-m band width application, or broadcast application, where the entire area was treated. Maximum effluent concentrations were measured from the broadcast treatment and ranged from 600 to 1100 microg L(-1) for atrazine and 250 to 450 microg L(-1) for metribuzin. Atrazine runoff losses were highest for the broadcast treatment (2.8-11% of that applied) and lowest for the 0.6-m band treatment (1.9-7.6%), with a similar trend for metribuzin losses. Measured extractable herbicides from the surface soil exhibited a sharp decrease with time and were well described with a simple first-order decay model. For atrazine, estimates for the decay rate (lambda) were higher than for metribuzin. Results based on laboratory adsorption-desorption (kinetic-batch) measurements were consistent with field observations. The distribution coefficients (Kd) for atrazine exhibited stronger retention over time in comparison with metribuzin on the Commerce soil. Moreover, discrepancies between adsorption isotherm and desorption indicated slower release and that hysteresis was more pronounced for atrazine compared with metribuzin.  相似文献   

5.
To improve understanding of the factors affecting pesticide occurrence in ground water, patterns of detection were examined for selected herbicides, based primarily on results from the National Water-Quality Assessment (NAWQA) program. The NAWQA data were derived from 2,227 sites (wells and springs) sampled in 20 major hydrologic basins across the USA from 1993 to 1995. Results are presented for six high-use herbicides--atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), cyanazine (2-[4-chloro-6-ethylamino-1,3,5triazin-2-yl]amino]-2-methylpropionitrile), simazine (2-chloro-4,6-bis-[ethylamino]-s-triazine), alachlor (2-chloro-N-[2,6-diethylphenyl]-N-[methoxymethyl]acetamide), acetochlor (2-chloro-N-[ethoxymethyl]-N-[2-ethyl-6-methylphenyl]acetamide), and metolachlor (2-chloro-N-[2-ethyl-6-methylphenyl]-N-[2-methoxylethyl]acetamide)--as well as for prometon (2,4-bis[isopropylamino]-6-methoxy-s-triazine), a nonagricultural herbicide detected frequently during the study. Concentrations were <1 microg L(-1) at 98% of the sites with detections, but exceeded drinking-water criteria (for atrazine) at two sites. In urban areas, frequencies of detection (at or above 0.01 microg L(-1)) of atrazine, cyanazine, simazine, alachlor, and metolachlor in shallow ground water were positively correlated with their nonagricultural use nationwide (P < 0.05). Among different agricultural areas, frequencies of detection were positively correlated with nearby agricultural use for atrazine, cyanazine, alachlor, and metolachlor, but not simazine. Multivariate analysis demonstrated that for these five herbicides, frequencies of detection beneath agricultural areas were positively correlated with their agricultural use and persistence in aerobic soil. Acetochlor, an agricultural herbicide first registered in 1994 for use in the USA, was detected in shallow ground water by 1995, consistent with previous field-scale studies indicating that some pesticides may be detected in ground water within 1 yr following application. The NAWQA results agreed closely with those from other multistate studies with similar designs.  相似文献   

6.
Increased attention to ground water contamination has encouraged an interest in mechanisms of solute transport through soils. Few studies have investigated the effect of the initial soil water content on the transport and degradation of herbicides for claypan soils. We investigated the effect of claypan soils at initial field capacity vs. permanent wilting level on atrazine and alachlor transport. The soil studied was Mexico silt loam (fine, smectitic, mesic Aeric Vertic Epiaqualf) with a subsoil clay content, primarily montmorillonite, of >40%. Strontium bromide, atrazine, and alachlor were applied to plots; half were at field capacity (Wet treatment), and half were near the permanent wilting point (Dry treatment). Soil cores were removed at selected depths and times, and cores were analyzed for bromide and herbicide concentrations. Bromide, atrazine, and alachlor were detected at the 0.90-m depth in dry plots within 15 d after experiment initiation. Bromide was detected 0.15 m deeper (P < 0.05) in the Dry compared with the Wet treatment at 1, 7, and 60 d after application and >0.30 m deeper (P < 0.01) in the Dry treatment at 15 and 30 d after application; similar treatment results were found for atrazine and alachlor, although on fewer dates with significant differences. The mobility order of the applied chemicals was bromide > atrazine > alachlor. The atrazine apparent half-life was significantly longer in the Dry plots compared with the Wet plots. The retardation factor determined from the relative velocity of each herbicide to that of bromide was higher for alachlor than for atrazine. This study identifies the impact that shrinkage cracks have for different moisture conditions on preferential transport of herbicides in claypan soils.  相似文献   

7.
A study of the desorption of atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine) and linuron [1-methoxy-1-methyl-3-(3,4-dichlorophenyl)urea] adsorbed on soils with different organic matter (OM) and clay contents was conducted in water and in the presence of the non-ionic surfactant Triton X-100 at different concentrations. The aim was to gain insight into soil characteristics in surfactant-enhanced desorption of herbicides from soils. Adsorption and desorption isotherms in water, in all Triton X-100 solutions for atrazine, and in solutions of 0.75 times the critical micelle concentration (cmc) and 1.50cmc for linuron fit the Freundlich equation. All desorption isotherms showed hysteresis. Hysteresis coefficients decreased for linuron and increased or decreased for atrazine in Triton X-100 solutions. These variations were dependent on surfactant concentration and soil OM and clay contents. In the soil-water-surfactant system desorption of linuron from all soils was always greater than in the soil-water system but for atrazine this only occurred at concentrations higher than 50cmc. For the highest Triton X-100 concentration (100cmc), the desorption of the most hydrophobic herbicide (linuron) was increased more than 18-fold with respect to water in soil with an OM content of 10.3% while the atrazine desorption was increased 3-fold. The effect of Triton X-100 on the desorption of both herbicides was very low in soil with a high clay content. The results indicate the potential use of Triton X-100 to facilitate the desorption of these herbicides from soil to the water-surfactant system. They also contribute to better understanding of the interactions of different molecules and surfaces in the complex soil-herbicide-water surfactant system.  相似文献   

8.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

9.
Reducing surface and subsurface losses of herbicides in the soil and thus their potential contamination of water resources is a national concern. This study evaluated the effectiveness of sugarcane (Saccharum spp.) residue (mulch cover) in reducing nonpoint-source contamination of applied herbicides from sugarcane fields. Specifically, the effect of mulch residue on herbicide retention was quantified. Two main treatments were investigated: a no-till treatment and a no-mulch treatment. The amounts of extractable atrazine [2-chloro-4-(isopropylamino)-6-ethylamino-s-triazine], metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one], and pendimethalin [N-(ethylpropyl)-3,4-dimethyl-2,6-dinitroaniline] from the mulch residue and the surface soil layer were quantified during the 1999 and 2000 growing seasons. Significant amounts of applied herbicides were intercepted by the mulch residue. Extractable concentrations were at least one order of magnitude higher for the mulch residue compared with that retained by the soil. Moreover, the presence of mulch residue on the sugarcane rows was highly beneficial in minimizing runoff losses of the herbicides applied. When the residue was not removed, a reduction in runoff-effluent concentrations, as much as 50%, for atrazine and pendimethalin was realized. Moreover, the presence of mulch residue resulted in consistently lower estimates for rates of decay or disappearance of atrazine and pendimethalin in the surface soil.  相似文献   

10.
A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.  相似文献   

11.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) is frequently detected at high concentrations in ground water. Bentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide] plus alachlor (2-chloro-2',6'-diethyl-N-methoxymethylacetanilide) is a potential herbicide combination used as a substitute for atrazine. Thus, the objective of this study was to assess the environmental risk of this blend. Drainage water contamination by bentazone and alachlor was assessed in silty clay (Vertic Eutrochrept) and silt loam (Aquic Hapludalf) soils under the same management and climatic conditions. Drainage volumes and concentrations of alachlor and bentazone were monitored after application. Herbicides first arrived at the drains after less than 1 cm of net drainage. This is consistent with preferential flow and suggests that about 3% of the pore volume was active in rapid transport. During the monitoring periods, bentazone losses were higher (0.11-2.40% of the applied amount) than alachlor losses (0.00-0.28%) in the drains of the silty clay and silt loam. The rank order of herbicide mass losses corresponded with the rank order of herbicide adsorption coefficients. More herbicide residues were detected in drainage from the silty clay, probably due to preferential flow and more intensive drainage in this soil than the silt loam. Surprisingly, herbicide losses were higher in the drains of both soils in the drier of the two study years. This could be explained by the time intervals between the treatments and first drainage events, which were longer in the wetter year. Results suggest that the drainage phases occurred by preferential flow in the spring-summer period, with correspondingly fast leaching of herbicides, and by matrix flow during the fall-winter period, with slower herbicide migration.  相似文献   

12.
The occurrence of metabolites of many commonly used herbicides in streams has not been studied extensively in tile-drained watersheds. We collected water samples throughout the Upper Embarras River watershed [92% corn, Zea mays L., and soybean, Glycine max (L.) Merr.] in east-central Illinois from March 1999 through September 2000 to study the occurrence of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), metolachlor 12-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide], acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl) acetamide], and their metabolites. River water samples were collected from three subwatersheds of varying tile density (2.8-5.3 km tile km(-2)) and from the outlet (United States Geological Survey [USGS] gage site). Near-record-low totals for stream flow occurred during the study, and nearly all flow was from tiles. Concentrations of atrazine at the USGS gage site peaked at 15 and 17 microg L(-1) in 1999 and 2000, respectively, and metolachlor at 2.7 and 3.2 microg L(-1); this was during the first significant flow event following herbicide applications. Metabolites of the chloroacetanilide herbicides were detected more often than the parent compounds (evaluated during May to July each year, when tiles were flowing), with metolachlor ethanesulfonic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid] detected most often (> 90% from all sites), and metolachlor oxanilic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoacetic acid] second (40-100% of samples at the four sites). When summed, the median concentration of the three chloroacetanilide parent compounds (acetochlor, alachlor, and metolachlor) at the USGS gage site was 3.4 microg L(-1), whereas it was 4.3 microg L(-1) for the six metabolites. These data confirm the importance of studying chloroacetanilide metabolites, along with parent compounds, in tile-drained watersheds.  相似文献   

13.
Application of organic chemicals to a newly irrigated sugarcane (Saccharum officinarum L.) area located in the semiarid western part of Reunion Island has prompted local regulatory agencies to determine their potential to contaminate ground water resources. For that purpose, simple indices known as the ground water ubiquity score (Gustafson index, GUS), the retardation factor (RF), the attenuation factor (AF), and the log-transformed attenuation factor (AFT) were employed to assess the potential leaching of five herbicides in two soil types. The herbicides were alachlor [2-chloro-2',6'-diethyl-N-(methoxy-methy) acetanilide], atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine], diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], 2,4-D [(2,4-dichlorophenoxy) acetic-acid], and triclopyr [((3,5,6-trichloro-2-pyridyl)oxy) acetic-acid]. The soil types were Vertic (BV) and Andepts (BA) Inceptisols, which are present throughout the Saint-Gilles study area on Reunion Island. To calculate the indices, herbicide sorption (K(oc)) and dissipation (half-life, DT50) properties were determined from controlled batch experiments. Water fluxes below the root zone were estimated by a capacity-based model driven by a rainfall frequency analysis performed on a 13-yr data series. The results show a lower risk of herbicide leaching than in temperate regions due to the tropical conditions of the study area. Higher temperatures and the presence of highly adsorbent soils may explain smaller DT50 and higher K(oc) values than those reported in literature concerning temperate environments. Based on the RF values, only 2,4-D and triclopyr appear mobile in the BV soil, with all the other herbicides being classified from moderately to very immobile in both soils. The AFT values indicate that the potential leaching of the five herbicides can be considered as unlikely, except during the cyclonic period (about 40 d/yr) when there is a 2.5% probability of recharge rates equal to or higher than 50 mm/d. In that case, atrazine in both soils, 2,4-D and triclopyr in the BV soil, and diuron and alachlor in the BA soil present a high risk of potential contamination of ground water resources.  相似文献   

14.
Few studies have examined the water quality impact of manure use in no-tillage systems. A lysimeter study in continuous corn (Zea mays L.) was performed on Maury silt loam (fine, mixed, semiactive, mesic Typic Paleudalf) to evaluate the effect(s) of tillage (no-till [NT] and chisel-disk [CD]), nitrogen fertilizer rate (0 and 168 kg N ha(-1)), and dairy manure application timing (none, spring, fall, or fall plus spring) on NO3-N, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)acetanilide] concentrations in leachate collected at a 90-cm depth. Herbicides were highest immediately after application, declining to less than 4 mug L(-1) in about two months. Manure and manure timing by tillage interactions had little effect on leachate herbicides; rather, the data suggest that macropores rapidly transmitted atrazine and alachlor through the soil. Tillage usually did not significantly affect leachate NO3-N, but no-tillage tended to cause higher NO(3)-N. Manuring caused higher NO3-N concentrations; spring manuring had more impact than fall, but fall manure contained about 78% of the N found in spring manure. Nitrate under spring "only fertilizer" treatment exceeded 10 mg L(-1) 38% of the time, compared with 15% for spring only manure treatment. After three years, manured soil leachate NO3-N exceeded that for soil receiving only N fertilizer. Soil profile (90 cm) NO3-N after corn harvest exceeding 22 kg N ha(-1) was associated with winter leachate NO3-N greater than 10 mg N L(-1). Manure can be used effectively in conservation tillage systems on this and similar soils. Accounting for all N inputs, including previous manure applications, will be important.  相似文献   

15.
Vegetated filter strips (VFS) potentially reduce the off-site movement of herbicides from adjacent agricultural fields by increasing herbicide mass infiltrated (Minf) and mass adsorbed (Mas) compared with bare field soil. However, there are conflicting reports in the literature concerning the contribution of Mas to the VFS herbicide trapping efficiency (TE). Moreover, no study has evaluated TE among atrazine (6-chloro-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) and atrazine metabolites. This study was conducted to compare TE, Minf, and Mas among atrazine, diaminoatrazine (DA, 6-chloro[1,3,5]triazine-2,4-diamine), deisopropylatrazine (DIA, 6-chloro-N-ethyl-[1,3,5]triazine-2,4-diamine), desethylatrazine (DEA, 6-chloro-N-isopropyl-[1,3,5]triazine-2,4-diamine), and hydroxyatrazine (HA, 6-hydroxy-N-ethyl-N'-isopropyl-[1,3,5]triazine-2,4-diamine) in a buffalograss VFS. Runoff was applied as a point source upslope of a 1- x 3-m microwatershed plot at a rate of 750 L h(-1). The point source was fortified at 0.1 microg mL(-1) atrazine, DA, DIA, DEA, and HA. After crossing the length of the plot, water samples were collected at 5-min intervals. Water samples were extracted by solid phase extraction and analyzed by high performance liquid chromatography (HPLC) photodiode array detection. During the 60-min simulation, TE was significantly greater for atrazine (22.2%) compared with atrazine metabolites (19.0%). Approximately 67 and 33% of the TE was attributed to Minf and Mas, respectively. These results demonstrate that herbicide adsorption to the VFS grass, grass thatch, and/or soil surface is an important retention mechanism, especially under saturated conditions. Values for Mas were significantly higher for atrazine compared with atrazine's metabolites. The Mas data indicate that atrazine was preferentially retained by the VFS grass, grass thatch, and/or soil surface compared with atrazine's metabolites.  相似文献   

16.
Lerch, R.N., E.J. Sadler, C. Baffaut, N.R. Kitchen, and K.A. Sudduth, 2010. Herbicide Transport in Goodwater Creek Experimental Watershed: II. Long‐Term Research on Acetochlor, Alachlor, Metolachlor, and Metribuzin. Journal of the American Water Resources Association (JAWRA) 1‐15. DOI: 10.1111/j.1752‐1688.2010.00504.x Abstract: Farmers in the Midwestern United States continue to be reliant on soil‐applied herbicides for weed control in crop production, and herbicide contamination of streams remains an environmental problem. The main objective of this study was to analyze trends in concentration and load of acetochlor, alachlor, metolachlor, and metribuzin in Goodwater Creek Experimental Watershed (GCEW) from 1992 to 2006. A secondary objective was to document the effects of best management practices (BMPs) implemented within GCEW on herbicide transport trends. Median relative herbicide loads, as a percent of applied, were 3.7% for metolachlor, 1.3% for metribuzin, 0.36% for acetochlor, and 0.18% for alachlor. The major decrease in alachlor use and increase in acetochlor use caused shifts in flow‐weighted concentrations that were observed over the entire concentration range. The smaller decrease in metolachlor use led to a consistent decreasing time trend only for the upper end of the concentration distribution. Metribuzin also showed moderate decreases in concentration with time since 1998. Annual loads were generally correlated to second quarter discharge. Despite extensive education efforts in the watershed, conservation BMPs within GCEW were mainly implemented to control erosion, and therefore had no discernable impact on reducing herbicide transport. Overall, changes in herbicide use and second quarter discharge had the greatest effect on trends in flow‐weighted concentration and annual load.  相似文献   

17.
An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study. Metolachlor [2-chloro--(2-ethyl-6-methylphenyl)--(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] were coapplied as a surface broadcast spray. Herbicide runoff was monitored from a month before application through harvest. A flux gradient technique was used to compute volatilization fluxes for the first 5 d after application using herbicide concentration profiles and turbulent fluxes of heat and water vapor as determined from eddy covariance measurements. Results demonstrated that volatilization losses for these two herbicides were significantly greater than runoff losses ( < 0.007), even though both have relatively low vapor pressures. The largest annual runoff loss for metolachlor never exceeded 2.5%, whereas atrazine runoff never exceeded 3% of that applied. On the other hand, herbicide cumulative volatilization losses after 5 d ranged from about 5 to 63% of that applied for metolachlor and about 2 to 12% of that applied for atrazine. Additionally, daytime herbicide volatilization losses were significantly greater than nighttime vapor losses ( < 0.05). This research confirmed that vapor losses for some commonly used herbicides frequently exceeds runoff losses and herbicide vapor losses on the same site and with the same management practices can vary significantly year to year depending on local environmental conditions.  相似文献   

18.
Water quality is being affected by herbicides, some allegedly harmful to human health. Under scrutiny is atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), a commonly used herbicide in corn (Zea mays L.) and sorghum [Sorghum bicolor (L.) Moench] production. Concentrations of soluble and adsorbed atrazine losses sometimes exceed the safe drinking water standard of 3 microg L(-1) established by the USEPA. This study assesses the protective implications of runoff control structures and alternative crop farming practices to minimize atrazine losses. Using a computerized simulation model, APEX, the following four practices were the most effective with respect to the average atrazine loss as a percent of the amount applied: (i) constructing sediment ponds, 0.09%; (ii) establishing grass filter strips, 0.14%; (iii) banding a 25% rate of atrazine, 0.40%; and (iv) constructing wetlands, 0.45%. Other atrazine runoff management options, including adoption of alternative tillage practices such as conservation and no-till as well as splitting applications between fall and spring, were marginally effective.  相似文献   

19.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] have been found with increasing occurrence in rivers and streams. Their continued use will require changes in agricultural practices. We compared water quality from four crop-tillage treatments: (i) conventional moldboard plow (MB), (ii) MB with ryegrass (Lolium multiflorum Lam.) intercrop (IC), (iii) soil saver (SS), and (iv) SS + IC; and two drainage control treatments, drained (D) and controlled drainage-subirrigation (CDS). Atrazine (1.1 kg a.i. ha-1), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one] (0.5 kg a.i. ha-1), and metolachlor (1.68 kg a.i. ha-1) were applied preemergence in a band over seeded corn (Zea mays L.) rows. Herbicide concentration and losses were monitored from 1992 to spring 1995. Annual herbicide losses ranged from < 0.3 to 2.7% of application. Crop-tillage treatment influenced herbicide loss in 1992 but not in 1993 or 1994, whereas CDS affected partitioning of losses in most years. In 1992, SS + IC reduced herbicide loss in tile drains and surface runoff by 46 to 49% compared with MB. The intercrop reduced surface runoff, which reduced herbicide transport. Controlled drainage-subirrigation increased herbicide loss in surface runoff but decreased loss through tile drainage so that total herbicide loss did not differ between drainage treatments. Desethyl atrazine [6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine] comprised 7 to 39% of the total triazine loss.  相似文献   

20.
The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号