首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The scarcity of fossil fuels has urged the economically developed countries to find the resources for an alternative energy sources. In apprehension to this, biofuels, like bioethanol and biobutanol, produced from lignocellulosic biomass were considered as potential alternative. There are several methods for the pretreatment of biomass before it is being used as a feedstock for the production of fermentable sugars. However, one of the crucial concerns here is to enumerate an economic pretreatment scheme that can be implemented in large scale for the production of mostly exposed cellulosic part from biomass. This will ensure an effective hydrolysis of cellulose for the production of fermentable sugars and the production of biobutanol from these derived sugars. Moreover, the keynote understanding of an effective fermentation is the production of less inhibitory compounds like furfural, hydroxymethyl furfural during the hydrolysis of cellulose. Enzymatic hydrolysis of cellulose was reported as the most efficient method is this aspect. Trichoderma sp. was found the mostly used resources for the enzyme called cellulase and Aspergillus sp. for hemicellulase enzymes. The most crucial part here is the isolation of proper enzyme that will increase the rate of hydrolysis. Moreover, selection of proper pretreatment process will be a key benefit to the production of fermentable sugars through enzymatic hydrolysis. Based on the biomass nature, the evaluated hot water pretreatment followed by enzymatic hydrolysis with a provision of enzyme reusability (like encapsulated or enzyme separation with membrane) seems to be promising for enhanced biofuel-production.  相似文献   

2.
Sawtooth Oak (Quercus acutissima) shells were used as a renewable and low-cost agricultural residue for bioethanol production for the first time. The efficiency of H2SO4, NaOH, steam explosion and the combination of these methods was compared in terms of delignification, saccharification efficiency and yield. The structural features of samples were characterized by SEM, XRD and FTIR. Results show H2SO4/steam explosion resulted in the highest hemicellulose reduction (98.5%) and cellulose recovery yield (99.9%). NaOH /steam explosion resulted in the highest delignification level (31.5%). Steam explosion exhibited the highest enzymatic digestibility of 98.8% and total product yield of glucose of 84.8%, an increase of 130.8% and 98.1% than that of untreated oak shell, respectively, which seemed to be the most effective for improving enzymatic saccharification. The results of structural features showed the structure and surface of shells were changed that is in favor of the following enzymatic hydrolysis.  相似文献   

3.
Recycling of plant materials and agricultural residues for biomethanation was attempted in vials. The methanogenic activities of certain sewage samples have also been tested. Both sterilized and non-sterilized biomasses were used. Biomethanation was carried out with dung samples (cow, goat, buffalo, piggery wastes and poultry wash) as wild populations of microbes and in combination with other microbial isolates (isolated in the laboratory).Biomethanation had been observed to be good in most cases and particularly with the sterilized biomass. Mixed inoculum (dung samples and poultry wash) was found to be best for biomethanation. Of the microbe isolates, isolates from buffalo, pig and paper mill wastes appear to be most effective. Pretreated sawdust and rice straw were found to be good subtrates for biomethanation. Of the different plant biomass used Spirogyra (algae), Ipomea and water hyacinth were most effective whereas Jatropa gossypifolia and Parthenium sp. were the least effective. Biomethanation of Spirogyra was carried out both in anoxic and oxic conditions. Though methane production decreased enormously under oxic conditions, definite methane production continued indicating that the biomethanation process is not exclusively anoxic. Similarly, biomethanation of sewage samples from different sewage treatment plants were carried out with and without isolated methanogens and methane production was found to be moderate.  相似文献   

4.
In the present work, a novel cellulose-based porous heterogeneous solid acid catalyst encapsulation of ferriferous oxide (Fe3O4) and sulfonated graphene (GO-SO3H) into cellulose to form composite porous microspheres catalyst (GO-SO3H/CM@Fe3O4) was synthesized and evaluated for biodiesel production from Pistacia chinensis seed oil. The SEM, EDS and FTIR analysis revealed that the catalyst GO-SO3H/CM@Fe3O4 owned stronger active sites and GO-SO3H dispersed well in porous surface and inside of cellulose support. Under the optimum conditions, microwave-assisted transesterification process was carried out with the best catalyst amount, i.e. 5 wt% GO-SO3H/CM@Fe3O4 (weight ratio of GO-SO3H/cellulose), and conversion yield reached 94%. The prepared catalyst could be easily separated from reaction solution by extra magnetic field and reclaimed at least five runs.  相似文献   

5.
The increasing consumption and excessive extraction of conventional fuels is the matter of serious concern. Nowadays, world is looking for alternative sources of fuel which can partially replace conventional fuel dependence. The current investigation intends to provide evaluation of bio-ethanol preparation from Water Hyacinth (WH) and its influence on diesel engine performance under various operating conditions. This study explores the extraction of glucose from WH (Eichhornia crassipes) pretreated with sulfuric acid (H2SO4) for production of bio-ethanol. For the production of bio-ethanol different concentrations of H2SO4 acid hydrolysate (1%, 2%, 4%, 6%, 8%, and 10%) were prepared which was then followed by fermentation with cellulose fermenting yeasts. From results, it was observed that 4% H2SO4 acid hydrolysis produces higher concentrations of ethanol than other concentrations. Bio-ethanol extracted from WH was blended with diesel in different proportions (5%, 10%, 15%, 20%, and 25%) v/v and performance and emissions were experimentally investigated on single cylinder diesel engine under various load conditions. Experimental results show that 5 BED [5% bio-ethanol (WH + 95%diesel v/v) and 10BED (10% bio-ethanol (WH + 90%diesel v/v)] produces higher brake power, brake thermal efficiency and brake mean effective pressure with improved exhaust emission profiles than any other blend.  相似文献   

6.
The results of an investigation characterizing the nutrients and suspended solids contained in stormwater from Kranji Catchment in Singapore are reported in this paper. Stormwater samples were collected from 4 locations and analyzed for the following eleven analytes: TOC, DOC, TN, TDN, NH4+, NO2 + NO3 (NOx), TP, TDP, OP, SiO2 and TSS. Stormwater was sampled from catchments with various proportions of rural and urban land use, including forested areas, grassed areas, agricultural and residential and commercial areas. The event mean concentrations (EMCs) of nutrients and TSS from sampling stations which have agricultural land use activities upstream were found to be higher. Comparison of site EMCs (SMCs) with published data showed that the SMCs of the nutrients and TSS are generally higher than SMCs reported for forested areas but lower than published SMCs for urban areas. Positive correlations (p < 5%) were found between loading and peak flow at locations most impacted by ubanisation or agricultural activities. Correlation between loading and rainfall variables was less distinct. EMC was found to correlate less with rainfall and flow variables compared to pollutant loading. Unlike loading, no consistent pattern exists linking EMC to any particular storm or flow variable in any of the catchments. Lastly, positive correlations were obtained between the particulate forms of nitrogen and phosphorus and TSS.  相似文献   

7.
This paper investigates the suitability of Jerusalem artichoke (Helianthus tuberosus L.), fiber hemp (Cannabis sativa L.), energy sunflower (Helianthus annuus L.), Amur silver-grass (Miscanthus sacchariflorus), and energy grass cultivar (cv) Szarvasi-1 for biofuel production in Northern climatic conditions. Above ground biomass, bioethanol production yield, and methane production yield are used as indicators to assess the bio-energy potential of the culture. Results presented show that energy crops of Southern origin produce 30–70% less biomass than in the origin region. Nonetheless, both perennial and annual energy crops produce high above ground biomass yields (660–1280 g m–2) for Northern climatic conditions. Experimental results show that bioethanol yield is dependent on cellulose content of the biomass. The higher the cellulose content, the higher the bioethanol yield. The biogas production on the other hand, depends on lignin content. The lower the lignin content the higher the biogas yield. Therefore, the selection of the energy crop for bioethanol production should be based on high cellulose content, while for biogas production it should rather be based on the low lignin content.  相似文献   

8.
Annually, great amounts of cellulose wastes, which could be measured in many billions of tons, are produced worldwide as residues from agricultural activities and industrial food processing. Consequently, the use of microorganisms in order to remove, reduce or ameliorate these potential polluting materials is a real environmental challenge, which could be solved by a focused research concerning efficient methods applied in biological degradation processes. In this respect, the scope of this chapter is to present the state of the art concerning the biodegradation of redundant cellulose wastes from agriculture and food processing by continuous enzymatic activities of immobilized bacterial and fungal cells as improved biotechnological tools and, also, to report on our recent research concerning cellulose wastes biocomposting to produce natural organic fertilizers and, respectively, cellulose bioconversion into useful products, such as: ‘single-cell protein’ (SCP) or ‘protein-rich feed’ (PRF). In addition, there are shown some new methods to immobilize microorganisms on polymeric hydrogels such as: poly-acrylamide (PAA), collagen-poly-acrylamide (CPAA), elastin-poly-acrylamide (EPAA), gelatin-poly-acrylamide (GPAA), and poly-hydroxy-ethyl-methacrylate (PHEMA), which were achieved by gamma polymerization techniques. Unlike many other biodegradation processes, these methods were performed to preserve the whole viability of fungal and bacterial cells during long term bioprocesses and their efficiency of metabolic activities. The immobilization methods of viable microorganisms were achieved by cellular adherence mechanisms inside hydrogels used as immobilization matrices which control cellular growth by: reticulation size, porosity degree, hydration rate in different colloidal solutions, organic and inorganic compounds, etc. The preparative procedures applied to immobilize bacterial and fungal viable cells in or on radiopolymerized hydrogels and, also, their use in cellulose wastes biodegradation are discussed in detail. In all such performed experiments were used pure cell cultures of the following cellulolytic microorganisms: Bacillus subtilis and Bacillus licheniformis from bacteria, and Pleurotus ostreatus, Pleurotus florida, and Trichoderma viride from fungi. These species of microorganisms were isolated from natural habitats, then purified by microbiological methods, and finally, tested for their cellulolytic potential. The cellulose biodegradation, induced especially by fungal cultures, used as immobilized cells in continuous systems, was investigated by enzymatic assays and the bioconversion into protein-rich biomass was determined by mycelial protein content, during such long time processes. The specific changes in cellular development of immobilized bacterial and fungal cells in PAA hydrogels emphasize the importance of physical structure and chemical properties of such polymeric matrices used for efficient preservation of their metabolic activity, especially to perform in situ environmental applications involving cellulose biodegradation by using immobilized microorganisms as long-term viable biocatalysts.  相似文献   

9.
The CO2SINK project in Ketzin represents a field laboratory for the storage of CO2 in a 650-m deep saline aquifer. The project is accompanied by a microbiological monitoring programme to characterise the composition and activity of the autochthonous microbial community in rock and brine samples and their changes in response to CO2 storage. A prerequisite of these studies is the acquisition of samples free of contamination from microorganisms and organic and inorganic components. Drilling mud and technical fluids are the main sources of contamination. This study describes the application of the fluorescent dye tracers fluorescein and rhodamine B as contamination controls for rock core and brine samples. Fluorescein was added to drilling mud that was used during the coring phase of the Ketzin wells Ktzi 200, 201 and 202. In addition, total organic carbon (TOC) concentrations, reflecting the carboxymethyl cellulose (CMC) component of the drilling mud, were determined to verify the tracer results. The fluorescence and TOC analyses revealed that drilling mud filtrate penetrated the outer 20 mm of mildly permeable sandstone cores. Rhodamine B was added to brines that were used to displace the drilling mud and to flush the wells after completion. The tracer monitoring during the discharge of drilling mud and displacement brines from the wells during hydraulic tests and nitrogen lifts enabled the quantification of reservoir fluid quality. After the production of 140–190 m3 (16–21 borehole volumes) of fluid, the drilling mud concentration was reduced to about 0.05%. The use of fluorescein emerged as a field-capable, sensitive and reliable method during the sampling of rock core and formation brine samples.  相似文献   

10.
Recently biotechnology is focusing attention on utilization of biological resources to solve a number of environmental problems such as soil fertility management. Results of microbial studies on earthworm compost in the University of Nigeria farm identified a number of rock phosphate solubilizing actinomycetes. Two of these, isclates 02 and 13, were found to be efficient rock phosphate (RP) solubilizers and fast-growing cellulolytic microbes producing extracellular hydrolase enzymes. In this preliminary field study the two microbial isolates were investigated with respect to their effects on the growth of soybean and egusi as well as their effect on the incidence of toxicity of poultry droppings. Application of these isolates in poultry manure-treated field plots, as microbial fertilizers, brought about yield increases of 43% and 17% with soybeans and 19% and 33% with egusi, respectively. Soil properties were also improved. With isolates 02 and 13, the soil available phosphorus increased at the five-leaf stage, while N-fixation in the soil increased by 45% or 11% relative to control. It was further observed that air-dried poultry manure after four days of incubation was still toxic to soybean. The toxic effect of the applied poultry manure was reduced or eliminated with microbial fertilizers 02 or 13, respectively. The beneficial effects of the microbial organic fertilizer are discussed. Justification for more intensive research on rock phosphate organic fertilizer is highlighted.  相似文献   

11.
(CdS)x/(ZnS)1–x nanoparticles were synthesized as a visible light-driven photocatalyst using the stepped microemulsion technique with a series of the ratio factors (x). The photocatalytic test results showed that (CdS)x/(ZnS)1-x with x = 0.8 had the highest photo-reactivity for H2 production from water under visible light. The composite (CdS)0.8/(ZnS)0.2 catalyst had a heterogeneous structure that exhibited a much greater photocatalytic hydrogen production activity than either pure CdS or the homogeneous Cd0.8Zn0.2S solid solution. ZnS deposition also was shown to largely improve the stability of CdS in the heterostructured CdS/ZnS catalyst. Thermal treatment of the catalyst, i.e., annealing (CdS)0.8/(ZnS)0.2 at 723 K, improved the crystallinity of the catalyst and increased its photocatalytic H2 production rate by more than 36 times. Deposition of Ru on the surface of the catalyst particles by in situ photo-deposition further increased the photo-H2 generation rate by 3 times. The photocatalyst of 0.5%Ru/CdS/ZnS achieved the highest H2 production activity, at a rate of 12650 μmol/g-h and with a light to hydrogen energy conversion efficiency of 6.5%.  相似文献   

12.
Biodiesel provides a feasible solution to the twin crisis of energy security and environmental concerns prevalent today, and it can be extracted from conventional oil crops as well as microalgae. However, lipid productivity in case of microalgae is much higher and has several advantages as compared with crop plants, so it is a better feedstock for biodiesel. In case of Chlorella pyrenoidosa, the heterotrophic cultured cells were found to be better in terms of lipid production, and ultimately biodiesel production, but the bottleneck is that in this mode glucose is used to feed the cells, which amounts to almost 80% of the total cost of biodiesel production. The purpose of this study is to evaluate and highlight the feasibility of using the industrially cheap cane molasses as a carbon source in place of glucose for a large-scale, low-cost lipid production of Chlorella pyrenoidosa. When treated molasses was used as a carbon source instead of glucose, the biomass sharply increases from 0.89 to 1.22 g L–1. On the other hand, the total lipid content increases from 0.27 to 0.66 g g–1. The specific growth rate and yield was higher in treated molasses as compared with that in glucose-supplemented. A mathematical model was also developed based on logistic, Luedeking–Piret, and Luedeking-Piret-like equations. Model predictions were in satisfactory agreement with the measured data, and the mode of lipid production was growth-associated.  相似文献   

13.
Biohythane production via single-stage anaerobic digestion (AD) is an effective way for sustainable energy recovery from lignocellulosic biomass. In this paper, biohythane was produced through the AD process from pineapple peel waste substrate using purely cultured Methanosarcina mazei with the enhancement of palm oil mill effluent (POME) sludge as the inoculum. This study focuses on the effects of the lignocellulosic pre-treatment method, the addition of POME sludge into M. mazei culture medium as inoculum, and various operational conditions (food to microorganisms (F/M) ratios, temperature, pH) on gas production performances. The experimental results indicate that these parameters influenced the efficiency of biohythane production by producing the peak maximum biohythane production rate values (HPRmax) and (MPRmax), H2:CH4 = 1.93:0.67 L/L-d, and biohythane yield (HY) and (MY), H2:CH4 = 1.18:0.55 mL/L-substrate. This study demonstrates that biohythane gas (H2 + CH4 + CO2) production from pineapple waste can be accelerated by M. mazei only with the enhancement of POME sludge through single-stage AD system under mesophilic batch process conditions.  相似文献   

14.
Bacterial strains were isolated from sediment samples from the Thames River. Successive transfer growth of the various strains on nutrient agar containing increasing concentrations of AgNO3 revealed that three of the bacterial isolates were found to be capable of tolerating high concentrations of AgNO3 ranging from 20 to 80 mM on a solid medium and up to 10 mM AgNO3 in liquid medium. Molecular characterization and identification based on 16S rDNA gene sequencing of three strains of bacteria that are tolerant to silver nitrate showed that the major tolerant strains include the superbug, Shewanella oneidensis, Pseudomonas sp. and Bacillus sp. Protein extraction and two-dimensional (2D) sodium dodecyl sulfate SDS-polyacrylamide gel electrophoresis (PAGE) of the protein extracts in bacteria exposed to very high concentrations of AgNO3 revealed a general reduction in the number of expressed proteins, although two protein spots were conspicuously over expressed in the exposed bacteria compared to control. The N-terminal amino acid sequence analysis of the protein spots identified the major up-regulated proteins as the outer membrane protein To1C (45.2 kDa) and the structural protein of the flagellar filament, flagellin (28.34 kDa), encoded for by the to1C and fliC genes, respectively. The roles of these genes in a number of multi-drug resistant pathogen and potentials for biotechnological applications in toxic metal control for treatment of contaminated ecosystems and biomining were discussed.  相似文献   

15.
Understanding the effect of the liquid depth (z) on the acoustic generation of hydrogen is highly required for designing large-scale sonoreactors for hydrogen production because acoustic cavitation is the central event that initiates sonochemical reactions. In this paper, we present a computational analysis of the liquid-depth effect on the generation of H2 from a reactive acoustic bubble trapped in water irradiated with an attenuating sinusoidal ultrasound wave. The computations were made for different operating conditions of frequency (355–1000 kHz), acoustic intensity (1–5 W/cm2), and liquid temperature (10–30°C). The contribution of the acoustic wave attenuation on the overall effect of depth was appreciated for the different conditions. It was found that the acoustic generation of hydrogen diminished hardly with increasing depth up to z = 8 m, and the depth effect was strongly operating parameter-dependent. The sound wave attenuation played a crucial role in quenching H2 yield, particularly at higher z. The reduction of the H2 yield with depth was more pronounced at higher frequency (1000 kHz) and lower temperature (10°C) and acoustic intensity (1 W/cm2). The attenuation of the sound wave may contribute up to 100% in the overall reductive effect of depth toward H2 production rate. This parameter could be imperatively included when studying all aspects of underwater acoustic cavitation.  相似文献   

16.
Present investigation was done to evaluate various algal genera found in water bodies of Varanasi city. The potential of any biomass for biofuels (bioalcohols, biohydrogen, etc.) production depends on the quantity of extractable sugar present in it. Acid (H2SO4) and alkali (NaOH) pretreatment were performed, and H2SO4 was chosen due to its nearly double yield as compared with alkaline pretreatment. Response surface methodology was utilized for the optimization of operating parameters such as treatment temperature, time, and acid concentration. Sugar yield up to 0.33 g/g of dry biomass was obtained using cyanobacterial biomass of Lyngbya limnetica, at 100°C, 59.19 min, and H2SO4 concentration of 1.63 M.  相似文献   

17.
The concentration of dissolved oxygen (DO) strongly influences the performance of aerobic biofilm reactors because organic oxidation is limited by the availability of oxygen. However, it is not necessary to maintain a high DO level in the reactors in order to overcome this limitation. Excessive aeration wastes energy. Therefore, the determination of the onset of DO limitation against organic substrate removal in aerobic biofilm reactors is important for their effective operation. This study is aimed at developing an expression to determine the onset of DO limitation and hence to control the aeration system. The expression developed is as follows: , where Sb and Cb are the bulk concentrations of organic substrate and DO, respectively; Dws and Dwc are the diffusion coefficients of organic substrate and oxygen in the reactors respectively; and Rb is an overall ratio of oxygen consumption to organic substrate removal in the reactors. The latter is the key parameter in the equation, and is determined by the characteristics of the substrate, biofilm, and reactor. In order to measure the value of Rb, the authors have developed a micro-biofilm reactor. The value of Rb was determined to be 0.13 (mg O2 mg−1 CODcr) for glucose removal with this reactor. The equation has, subsequently, been verified with data from batch and continuous experiments.  相似文献   

18.
Nano-textured polysilicon (poly-Si) solar absorption films are to be applied to the solar receiver of solar thermal electricity Stirling engine. These films were fabricated by deposition of hydrogenated amorphous silicon films (a-Si:H) into poly-Si films, using the pulse-wave modulation plasma and furnace annealing of the a-Si:H films. This is followed by wet etching of poly-Si films into nano-textured structures. The films are then coated with a-SiNx:H films as the antireflection and protection layers. It was observed that increasing the pulsed plasma turn-on (ton) time leads to deposition of less dense a-Si:H film with high hydrogen content and void density. This results in films having low dielectric constant and refractive index, and high optical bandgap. Less-dense a-Si:H film can be transferred into large grain size poly-Si film, using annealing. Also, highly rough nano-textured surface structure can be produced, by etching. The denser a-Si:H film, large grain size poly-Si film, and nano-textured surface poly-Si film can enhance the absorbance of sunlight and reduce the emissivity of far infrared light. The nano-textured poly-Si film coated with an a-SiNx:H layer can effectively increase the absorbance of sunlight to approximately 85% and reduce the emissivity of far infrared light to 49%. The nano-textured poly-Si/a-SiNx:H films can be used as efficient solar absorption films for solar thermal electricity Stirling engine.  相似文献   

19.
This study focused on using scale inhibitors for calcium sulfate that are not only highly effective, but also comply with present restrictive environmental control legislations. In this respect, some biodegradable compounds-based biopolymers, such as carboxymethyl starch (CMS), carboxymethyl cellulose (CMC), and chitosan (Ch), were evaluated at temperatures 90–95 and 130°C. The results obtained were compared with the performance of polyaspartic acid (PAA), which is well known in this application, as well as other chelating synthetic polymers (polyacrylamide and amphoteric polyacrylamide). The role of the degree of substitution (DS) of carboxymethylated biopolymer and the charge density of polyacrylamide (AmPAM-30 and AmPAM-50) on inhibition performance of scale were also examined. The synergistic effect of PAA with investigated inhibitors was studied for economic and environmental purposes. The results revealed that both the degree of substitution of carboxymethylated biopolymers and charge density of polyacrylamide have a profound effect on improving the performance of the investigated scale inhibitors. The efficiency values were correlated to the thermal degradation behavior (TGA) of biopolymers. PAA had the highest synergistic effect of all investigated inhibitors, where the inhibition efficiency was found to range from 98% to 100%, at a temperature of 130°C, with low doses of both PAA (2 ppm) together with biopolymers. This efficiency is observed using 20–40 ppm of PAA. The synergistic effect of PAA (2 ppm) also showed enhancement of the performance of low doses of polyacrylamides (5 ppm) in maintaining soluble Ca2+ in solutions, increasing the efficiency from ∼57% to ∼100%, as well as its ecotoxicological property.  相似文献   

20.
Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–2050 found in the open literature is used. The basis for comparison is the production cost per t of high value chemicals (HVCs or light olefin-value equivalent). A Monte Carlo method was used to estimate the ranking of production costs of all 24 routes with 10,000 trials of varying energy prices and CO2 emissions costs (assumed to be within $0–100/t CO2; the total CO2 emissions, or cradle-to-grave CO2 emissions, were considered). High energy prices in the first three quarter of 2008 were tested separately. The main findings are:
  • Production costs: while the production costs of crude oil- and natural gas-based routes are within $500–900/t HVCs, those of coal- and biomass-based routes are mostly within $400–800/t HVCs. Production costs of coal- and biomass-based routes are in general quite similar while in some cases the difference is significant. Among the top seven most expensive routes, six are oil- and gas-based routes. Among the top seven least expensive routes, six are coal and biomass routes.
  • CO2 emissions costs: the effect of CO2 emissions costs was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. However, the effect on oil- and gas-based routes is found to be small or relatively moderate.
  • Energy prices in 2008: most of the coal-based routes and biomass-based routes (particularly sugar cane) still have much lower production costs than the oil- and gas-based routes (even if international freight costs are included).
To ensure the reduction of CO2 emissions in the long-term, we suggest that policies for the petrochemicals industry focus on stimulating the use of biomass as well as carbon capture and storage features for coal-based routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号