首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented here by which the actual numbers of individuals in the U.S. population who would be expected to suffer respiratory illness as a result of exposure to ambient nitrogen dioxide (NO2) concentrations in excess of the Federally-designated ambient air quality standard can be estimated. At the same time we have attempted to quantify how these adverse health effects would be alleviated by various degrees of reductions in current ambient concentrations. In addition, the health benefit expected to be derived by various NOx emission control strategies will be examined utilizing the health benefit estimation method presented.It is estimated that there were approximately 33.2×106 excess cases of respiratory illnesses in the U.S. in 1973 associated with ambient NO2 concentrations in excess of the national ambient standard. A reduction of approximately 50 to 60 percent below 1973 NO2 levels is needed to essentially eliminate excess respiratory illness associated with ambient NO2 concentration.  相似文献   

2.
An emissions inventory and the AERMOD View dispersion model were used to estimate the concentrations and the potential effects of carbon monoxide (CO) from diesel engine electric power generators operated by and providing electricity to a textile factory in Nigeria on its host air shed. The CO emissions from simultaneous operations of all of the electric power generators in the factory resulted in: 1‐hr average CO emissions of 4.2 to 54.5 micrograms per cubic meters (μg/m3) and 24‐hr average CO emissions of 0.3 to 20.9 μg/m3. The estimated 1‐hr averaging period maximum ground‐level concentrations of CO were deposited within the factory, while the 24‐hr maximum ground‐level concentrations are estimated at a distance 90 meters (m) from the factory in a southeast direction. The ground‐level concentrations of CO emanating from the textile factory are within the stipulated ambient air quality standards.  相似文献   

3.
The impact of off-road vehicles on a desert ecosystem   总被引:1,自引:0,他引:1  
The effects of operating a 4-wheel drive truck in a 9-ha area of the Mojave Desert were evaluated. A truck was driven over the same 0.9-km track 21 times between November 1973 and May 1974. The vehicle was also driven randomly around the area (1.3 to 3.4 km) 17 times between December 1973 and May 1974.Spring densities of annual plants in ruts of the regular track (8/m2) were less than those in control areas (46–112/m2), but densities in randomly driven plots (39/m2) did not differ significantly from controls. Severity of damage to shrubs was directly related to intensity of driving in the area. About 58% of shrubs growing in the regular track sustained estimated damage ranging from 81 to 100%. In randomly driven areas only 6% of shrubs were damaged to this extent, while about 61 % sustained damage from 0 to 20%.Numbers and kinds of rodents in control and driven areas were similar before and after the experiment. More young rodents were trapped in the experimental plot than in the control area during July 1974, and this may have been promoted by basal sprouting of new growth by damaged shrubs. Estimates of numbers of side-blotched lizards indicated similar densities before, during, and after the experiment. Counts of whiptail lizards in control and experimental areas were the same after the experiment, but counts of gridiron-tailed lizards were much lower in the driven area.  相似文献   

4.
《环境质量管理》2018,27(4):155-162
Ambient air pollution by vehicular emissions is underestimated, especially in the major cities of Nigeria. The buildup of the emissions in the atmosphere is a major health concern. This study estimated the emissions of gaseous criteria air pollutants (CAPs) from the road transport system in the Lagos metropolis from the year 2004 to 2007. The study also determined the ground‐level concentrations of these pollutants for the years under review. Estimation of the emission rates of all types of vehicles was performed using an emission factor approach, while the ground‐level concentrations of the CAPs were determined using the Industrial Source Complex Short Term 3 view model. The results showed that the mean concentrations of carbon monoxide in the ambient air were 26,741.12, 31,675.95, 54,515.48, and 72,388.09 micrograms per cubic meter (μg/m3) for years 2004, 2005, 2006, and 2007, respectively, while the estimated concentrations for oxides of nitrogen were 1,377.91 μg/m3 for year 2004, and 1,620.76, 2,897.33, and 3,839.68 μg/m3, respectively, for the years 2005, 2006, and 2007. The estimated concentrations of sulfur dioxide during the study period were 51,354.16, 57,244.76, 113,083.26, and 136,332.01 μg/m3 for 2004, 2005, 2006, and 2007, respectively. For volatile organic compounds, the estimated concentrations were 3,839.68, 6,839.65, 7,067.62, and 8,431.35 μg/m3 for years 2004, 2005, 2006, and 2007, respectively. The results also show that the maximum ground‐level concentrations were highest along the roadside, and the average CAPs concentrations and cumulative exposure concentrations that were estimated throughout the study period are a major health concern, as these concentrations are several times higher than international limits.  相似文献   

5.
Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.  相似文献   

6.
This study describes the methodology used to obtain the volatile organic compound (VOC) source signature of vehicle exhaust. To accomplish this, C(2)-C(9) VOCs were measured in a traffic tunnel located in Seoul, South Korea. The effect of VOC concentrations from the outside ambient air was considered in the determination of the source signature. To examine the effects of ambient air on VOC concentrations inside the tunnel, the ratio of propane to the total VOC concentrations was compared between the entrance and middle sites in the tunnel. Propane was used as a standard not only because of its insignificant contribution to vehicle exhaust gas, but also the fact that propane is the most abundant VOC in the atmosphere of Seoul. The ratio of propane to the total VOC concentrations was higher at the entrance site than at the middle location by, on average, 60%. This suggests that ambient air affects the inside tunnel air to a greater extent at the entrance site as compared to the middle site. The contribution of ambient air to the air inside the tunnel at the entrance location varied from 30% to 67%, with an average of 55%. This is 1.5 times higher than the value measured at the middle location, which ranged from 20% to 48%, with an average of 36%. This shows that ambient air substantially affects the inside air of the tunnel. Excluding the effects of ambient air on the air inside the tunnel can provide an improved chemical composition for vehicle exhaust using tunnel measurements. We believe that the concentration difference between the two sites within the tunnel provides a more accurate chemical composition of vehicle exhaust as compared to that obtained from a measurement taken at only one point inside the tunnel.  相似文献   

7.
The CAL3QHC model was used to predict carbon monoxide (CO) concentrations from motor vehicles at an existing urban intersection (Star Cinema in Muscat area, Oman). The CO concentrations predicted from the model were compared with those measured in the field. Predicted average CO concentrations were found to compare favorably with measured values obtained at all eight receptors considered within the modeled intersection. In general, the comparison indicates good agreement with some underprediction for CO. For receptor 6, the model overpredicts the average CO concentration. This overprediction is associated with the presence of trees and green area in the location of receptor 6. In general, the measurements and the model results indicated that the highest CO concentrations were found to occur close to the intersection and, hence, a decrease in the concentration levels was seen as the distance from the road increased. The results indicated that the levels of CO were well below the ambient air quality standard and that probably no health risk was present in areas adjacent to the star cinema intersection. However, the predicted worst-case 1-h CO concentrations assuming inversion atmospheric stability conditions (class F) and wind speed of 1 m/s indicated that the levels of CO were close to or higher than the Omans National Ambient Air Quality Standards (NAAQS) value of 35 ppm at all receptors considered. The results of this study are useful in transport development and traffic management planning.Published online.  相似文献   

8.
The body of information presented in this paper is directed to air pollution engineers who are concerned with the effect of indirect sources on ambient concentrations of carbon monoxide (CO). Data taken under controlled conditions are used to empirically derive and calibrate a model for predicting CO concentrations in the vicinity of roadway intersections and other points of possible vehicular congestion. Since the predicted free flow CO contribution of vehicles traveling at normal road speeds is relatively low, it is concluded that idling vehicles at points of congestion are the major cause of CO violations, and that state and federal programs should place more emphasis on relieving congestion and reducing idling emission rates in new vehicles.  相似文献   

9.
For this study, particulates or particulate matter (PM) and carbon monoxide (CO) levels were monitored at different sections on the production floor of a scrap metal recycling factory. A Met‐One GT331 dust monitor and A Toxi‐Rae gas monitor were used to measure PM and CO concentrations, respectively. The 24‐hr averaging period concentrations of particulate matter having diameters of 2.5 microns or less in diameter (PM2.5), particulate matter having diameters of 10 microns or less in diameter (PM10), and total suspended particulates (TSP) within the plant ranged between 8.3 and 50.4 μg/m3, 12.0 and 151.3 μg/m3, and 30.0 and 285.0 μg/m3, respectively, while the maximum 8‐hr concentration of CO within the plant was 20.5 parts per million (ppm). The United States’ Environmental Protection Agency (US EPA) limits for PM2.5, PM10, and CO were exceeded only in the area around the furnace. Nigeria's Federal Ministry of Environment (FMENV), the World Health Organization (WHO), and the World Bank statutory limit for TSP were also exceeded in the area around the furnace. Toxicity potentials (TP) of the investigated pollutants were greater than 1.0 around the furnace, indicating that work spaces in proximity to the furnace could expose workers to adverse health conditions.  相似文献   

10.
Because of its large population and rapidly growing economy, China is confronting a serious energy shortage and daunting environmental problems. An increased use of fuels derived from biomass could relieve some demand for nonrenewable sources of energy while providing environmental benefits in terms of cleaner air and reduced emissions of greenhouse gases. In 2003, China generated about 25.9 × 108 metric tons of industrial waste (liquid + solid), 14.7 × 108 metric tons/year (t/y) of manure (livestock + human), 7.1 × 108 t/y of crop residues and food-processing byproducts, 2 × 108 t/y of fuelwood and wood manufacturing residues, and 1.5 × 108 t/y of municipal waste. Biofuels derived from these materials could potentially displace the use of about 4.12 × 108 t/y of coal and 3.75 × 106 t/y of petroleum. An increased bioenergy use of this magnitude would help to reduce the emissions of key air pollutants: SO2 by 11.6 × 106 t/y, NOX by 1.48 × 106 t/y, CO2 by 1.07 × 109 t/y, and CH4 by 50 × 106 t/y. The reduced SO2 emissions would be equivalent to 54% of the national emissions in 2003, whereas those for CO2 are 30%. It is important to recognize, however, that large increases in the use of biomass fuels also could result in socioeconomic and environmental problems such as less production of food and damage caused to natural habitats.  相似文献   

11.
Abstract: A nitrogen (N) mass‐balance budget was developed to assess the sources of N affecting increasing ground‐water nitrate concentrations in the 960‐km2 karstic Ichetucknee Springs basin. This budget included direct measurements of N species in rainfall, ground water, and spring waters, along with estimates of N loading from fertilizers, septic tanks, animal wastes, and the land application of treated municipal wastewater and residual solids. Based on a range of N leaching estimates, N loads to ground water ranged from 262,000 to 1.3 million kg/year; and were similar to N export from the basin in spring waters (266,000 kg/year) when 80‐90% N losses were assumed. Fertilizers applied to cropland, lawns, and pine stands contributed about 51% of the estimated total annual N load to ground water in the basin. Other sources contributed the following percentages of total N load to ground water: animal wastes, 27%; septic tanks, 12%; atmospheric deposition, 8%; and the land application of treated wastewater and biosolids, 2%. Due to below normal rainfall (97.3 cm) during the 12‐month rainfall collection period, N inputs from rainfall likely were about 30% lower than estimates for normal annual rainfall (136 cm). Low N‐isotope values for six spring waters (δ15N‐NO3 = 3.3 to 6.3‰) and elevated potassium concentrations in ground water and spring waters were consistent with the large N contribution from fertilizers. Given ground‐water residence times on the order of decades for spring waters, possible sinks for excess N inputs to the basin include N storage in the unsaturated zone and parts of the aquifer with relatively sluggish ground‐water movement and denitrification. A geographical‐based model of spatial loading from fertilizers indicated that areas most vulnerable to nitrate contamination were located in closed depressions containing sinkholes and other dissolution features in the southern half of the basin.  相似文献   

12.
ABSTRACT: As part of a basinwide water-quality study, nitrogen and phosphorus data for the Upper Colorado River Basin from the Colorado-Utah State line to the Continental Divide were analyzed for spatial distributions, concentrations associated with various land uses, and temporal trends. Nitrogen and phosphorus concentrations generally increased in a downstream direction. Some nutrient concentrations were elevated at some sites in the upper parts of the basin in areas influenced by increasing urbanization. Sites were grouped according to land use and site type, and median nutrient concentrations were compared among groups. Sites within the agricultural areas of the basin generally had the highest concentrations of nitrogen and phosphorus; concentrations for main-stem, tributary, and urbanization sites were slightly lower than for the agricultural sites. Background sites, or sites with minimal land-use impacts, had very low median nutrient concentrations. Several sites with long-term data were analyzed for temporal trends in concentrations. Several statistically significant downward trends of low and moderate magnitude were observed for nitrogen and phosphorus species. No upward trends were observed in the data at any site.  相似文献   

13.
In this article, we analyzed the mass concentrations of particulate matter 2.5 micrometers (µm) or less in size (PM2.5), particulate matter 10 µm or less in size (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3) in Lanzhou, the capital of Gansu province, China. We analyzed monitoring data collected from five air quality monitoring stations during the spring–summer period from 2014 to 2016. Our comparison of contaminant concentrations and average diurnal, daily, monthly, and annual concentrations revealed that the average concentrations of PM2.5 and PM10 amounted to 128.57 and 46.4 micrograms per cubic meters (µg/m3), respectively, exceeding the Chinese National Ambient Air Quality Standard (NAAQS). We used the Pearson correlation coefficient to establish connections between particulate matter and gaseous pollutants. The results show significant differences in the concentration levels of airborne pollutants. The Pearson correlation coefficient between PM2.5 and PM10 had the highest coefficient of r = 0.842. A correlation between the two particulate matter sizes (PM2.5 and PM10) and SO2 was PM2.5 and SO2 r = 0.313; PM10 and SO2 r = 0.279; and CO and the two particulate matter sizes, PM2.5 and CO r = 0.304; and PM10 and CO r = 0.203. The average monthly ratio for the study months of PM2.5 to PM10 was 0.361. In addition, we used the hybrid single particle Lagrangian integrated trajectory model for tracking sources and pathways of the air pollutants in Lanzhou.  相似文献   

14.
The microbiological impact of a detergent and soap industries effluent on Clarias gariepinus was assessed under laboratory conditions. The heterotrophic bacterial count obtained from fish surfaces ranged from 1.2 × 102−2.0 × 102cfu/ml amongst the control, while values of 4.8× 106−8.6 × 106 cfu/ml were obtained for the experimental fish exposed to the industrial effluent (0.025 ppm). The fungal count for the controls ranged from 1.2× 102−1.2 × 103 cfu/ml; while a range of 1.0 × 106−2.0 × 106 was obtained for the fish exposed to the industrial effluent. While twelve bacterial species were isolated from the fish exposed to the industrial effluent, only two were isolated from the parts of the control fish used in the study. The bacterial species are those in the genera Staphylococcus, Proteus, Streptococcus, Micrococcus, Bacillus, Pseudomonas, Serratia, Enterobacter, and Escherichia. The fungal isolates include Saccharomyces, Aspergillus, Rhodosporium, Candida, Alternaria, and Fusarium. The resistance of the bacterial isolates to the commonly used antibiotics showed that 100% were resistant to Augmentin, Amoxycillin and Cloxacillin, 85.71% to Tetracycline, 80.95% to Cotrimoxazole, 71.43% to Erythromycin, 33.33% to Chloramphenicol, and 28.57% to Gentamicin. Among the eight antibiotics tested, five patterns of multiple drug resistance were obtained, with the number of the antibiotics ranging from 4–8. The public health implications of these observations are discussed.  相似文献   

15.
A system dynamics model based on the dynamic interactions among a number of system components is developed to estimate CO(2) emissions from the cement industry in India. The CO(2) emissions are projected to reach 396.89 million tonnes by the year 2020 if the existing cement making technological options are followed. Policy options of population growth stabilisation, energy conservation and structural management in cement manufacturing processes are incorporated for developing the CO(2) mitigation scenarios. A 42% reduction in the CO(2) emissions can be achieved in the year 2020 based on an integrated mitigation scenario. Indirect CO(2) emissions from the transport of raw materials to the cement plants and finished product to market are also estimated.  相似文献   

16.
利用长沙市城区2011年及2012年连续自动监测获得的CO2数据,两年的平均值为412.2×10^-6,高于世界本底站青海瓦里关5.6%,与临安、无锡相当,略高于乌鲁木齐,而低于北京、上海。冬季CO2浓度日小时变化呈现双峰形态,峰值出现在上午9时及晚上19时~21时。夏季日小时变化为单峰形态,峰值出现在上午8时。冬季CO2浓度日均值为420.3×10^-6,比夏季高3.4%。CO2除与O3呈负相关以外,与其它污染物均呈现显著性正相关,特别是与CO、NO、NO2、NOx、SO2的相关性最强,而与颗粒物(PM10、PM25)的相关性稍差。  相似文献   

17.
The relationship between specific particulate emission control and ambient levels of some PM10 components (Zn, As, Pb, Cs, Tl) was evaluated. To this end, the industrial area of Castellón (Eastern Spain) was selected, where around 40% of the EU glazed ceramic tiles and a high proportion of EU ceramic frits are produced. The PM10 emissions from the ceramic processes were calculated over the period 2000–2006, taking into account the degree of implementation of corrective measures throughout the study period. Abatement systems were implemented in the majority of the fusion kilns for frit manufacture in the area as a result of the application of the Directive 1996/61/EC, leading to a marked decrease in PM10 emissions. By contrast, emissions from tile manufacture remained relatively constant because of the few changes in the implementation of corrective measures. On the other hand, ambient PM10 levels and composition measurements were carried out from 2002 to 2006. A high correlation between PM10 emissions from frit manufacture and ambient levels of Zn, As, Pb and Cs (R2 from 0.61 to 0.98) was observed. On the basis of these results, the potential impact of the implementation of corrective measures to reduce emissions from tile manufacture was quantified, resulting in a possible decrease of 3–5 μg/m3 and 2 μg/m3 in ambient mineral PM10 (on an annual basis) in urban and suburban areas, respectively. This relatively simple methodology allows us to estimate the direct effect of a reduction in primary particulate emissions on ambient levels of key particulate components, and to make a preliminary quantification of the possibilities of air quality improvement by means of further emission reduction. Therefore, it is a useful tool for developing future air quality plans in the study area and in other industrialised areas.  相似文献   

18.
A data analysis of three major Korean cities was conducted to assess roadside inhalable particulate matter 10 μm or smaller in aerodynamic diameter (PM10), including temporal and meteorological variations, over a recent period of 4 to 6 years. The yearly roadside PM10 concentrations presented a well-defined increasing trend or no trend depending on the roadside monitoring station. Most mean values exceeded or approximated the Korean standard of 70 μg/m3 per year for PM10. A representative roadside diurnal trend was characterized by a distinct morning maximum. In most cases, the Sunday roadside concentrations were similar to or somewhat lower than the weekday concentrations, and the PM10 concentrations presented a well-defined seasonal variation, with the maximum concentration in March. The monthly maximum concentrations observed in March were most likely attributable to Asian dust storms. In two metropolitan cities (Seoul and Busan), the frequency of days with roadside PM10 concentrations exceeding the standard of 150μg/m3 per 24 h was much lower for the roadside monitoring stations than for the residential monitoring station, whereas in the third city (Daegu), this result was reversed. Interestingly, the average maximum concentrations observed for the roadside sites in Seoul and Busan during March were higher than those for the residential sites, suggesting that the roadside concentrations responded more to the dust storms than the residential areas. The relationship between the pollutant concentrations and five important meteorological parameters (solar radiation, wind speed, air temperature, relative humidity, and precipitation) showed that the number and type of meteorological variables included in the equations varied according to the monitoring station or season. Finally, the current results confirmed that attention should be given to the PM10 exposure of residents living near roadways.  相似文献   

19.
An assessment of potential biomass resources in Nigeria for the production of methane and power generation is presented in this paper. Nigeria, as an underdeveloped and populous country, needs an uninterrupted source of energy. The country's energy problems have crippled large sectors of the economy. The percentage of people connected to the national grid is 40%. These 40% experience electricity supply failure on average 10–12 hours daily. Energy generation from municipal solid waste (MSW) is an effective MSW management strategy. Yearly waste generation has increased from 6,471 gigagrams (Gg) in 1959 to 26,600 Gg in 2015. This amount is projected to reach 36,250 Gg per year by 2030. Methane emission for 2015 was 491 Gg, and it is projected to reach 669 Gg in 2030. These values translate to 3.48 × 109 kilowatt hours (kWh) of electricity for 2015, with a projected 4.74 × 109 kWh by 2030. The revenue to be derived from the electricity that is generated could have been US$365.04 × 106 for 2015, and it is estimated that it will reach US$473.82 × 106 by 2030. It was found that methane emissions from MSW increased with time, and capturing this gas for energy production will lead to a sustainable waste management.  相似文献   

20.
ABSTRACT: Lake water sulfate values were examined for two areas in western Norway and the western United States presently receiving low levels of sulfate in atmospheric deposition. Data from these areas were used to estimate background concentrations of sulfate in lakes found in areas currently receiving acidic deposition. The two areas contain dilute lakes with concentrations of sea-salt corrected Ca+ Mg less than 50 μeq/l or conductivity < 10μS cm-1and receive precipitation with volume-weighted mean pH > 4.8. Based on observations from these areas, we conclude that background sulfate concentrations were probably no more than 10 to 15 μeq L-1for areas of Norway and the U.S. containing lakes with low concentrations of base cations. For southern Norway and the northeastern U.S., present lakewater sulfate concentrations represent an increase of 7 to 10 fold above these estimated background values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号