首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Large and repeated manure applications can exceed the P sorption capacity of soil and increase P leaching and losses through subsurface drainage. The objective of this study was to evaluate the fate of P applied with increasing N rates in dairy wastewater or poultry litter on grassland during a 4-yr period. In addition to P recovery in forage, soil-test phosphorus (STP) was monitored at depths to 180 cm in a Darco loamy sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) twice annually. A split-plot arrangement of a randomized complete block design comprised four annual N rates (0, 250, 500, and 1000 kg ha(-1)) for each nutrient source on coastal bermudagrass [Cynodon dactylon (L.) Pers.] over-seeded with ryegrass (Lolium multiflorum L. cv. TAM90). Increasing annual rates of N and P in wastewater and poultry litter increased P removal in forage (P = 0.001). At the highest N rate of each nutrient source, less than 13% of applied P was recovered in forage. The highest N rates delivered 8 times more P in wastewater or 15 times more P in poultry litter than was removed in forage harvests during an average year. Compared with controls, annual P rates up to 188 kg ha(-1) in dairy wastewater did not increase STP concentrations at depths below 30 cm. In contrast, the highest annual P rate (590 kg ha(-1)) in poultry litter increased STP above that of controls at depth intervals to 120 cm during the first year of sampling. Increases in STP at depths below 30 cm in the Darco soil were indicative of excessive P rates that could contribute to nonpoint-source pollution in outflows from subsoil through subsurface drainage.  相似文献   

2.
The aim of this study was to determine the load of Escherichia coli transferred via drainage waters from drained and undrained pasture following a grazing period. Higher concentrations (ranging between 10(4) and 10(3) colony forming units [CFU] g(-1)) of E. coli persisted in soil for up to 60 d beyond the point where cattle were removed from the plots, but these eventually declined in the early months of spring to concentrations less than 10(2) CFU g(-1). The decline reflects the combined effect of cell depletion from the soil store through both wash-out and die-off of E. coli. No difference (P > 0.05) was observed in E. coli loads exported from drained and undrained plots. Similarly, no difference (P > 0.05) was observed in E. coli concentrations in drainage waters of mole drain flow and overland plus subsurface interflow. Intermittent periods of elevated discharge associated with storm events mobilized E. coli at higher concentrations (e.g., in excess of 400 CFU mL(-1)) than observed during low flow conditions (often <25 CFU mL(-1)). The combination of high discharge and cell concentrations resulted in the export of E. coli loads from drained and undrained plots exceeding 10(6) CFU L(-1) s(-1). The results highlight the potential for drained land to export E. coli loads comparable with those transferred from undrained pasture.  相似文献   

3.
ABSTRACT: Over a three‐year period, flow and nutrients were monitored at 13 sites in the upper North Bosque River watershed in Texas. Drainage areas above sampling sites differed in percent of dairy waste application fields, forage fields, wood/range, and urban land area. A multiple regression approach was used to develop total phosphorus (TP) and total nitrogen (TN) export coefficients for the major land uses in these heterogeneous drainage areas. The largest export coefficients were associated with dairy waste application fields followed by urban, forage fields, and wood/range. An empirical model was then established to assess nutrient contribution by major sources using developed export coefficients and point source loadings from municipal wastewater treatment. This model was verified by comparison of estimated loadings to measured in‐stream data. Monte Carlo simulation techniques were applied to provide an uncertainty analysis for nutrient loads by source, based on the variance associated with each export coefficient. The largest sources of nutrients contributing to the upper North Bosque River were associated with dairy waste application fields and forage fields, while the greatest relative uncertainty in source contribution was associated with loadings from urban and wood/range land uses.  相似文献   

4.
A long-term water quality monitoring program was established to evaluate the effects of agricultural management practices on water quality in the Little Vermilion River (LVR) watershed, IL. This watershed has intensive random and irregular subsurface drainage systems. The objective of this study was to assess the fate and transport of soluble phosphorus (soluble P) through subsurface drainage and surface runoff. Four sites (sites A, B, C, and E) that had subsurface and surface monitoring programs were selected for this study. Three of the four study sites had corn (Zea mays L.) and soybeans (Glycine max L.) planted in rotations and the other site had seed corn and soybeans. Subsurface drainage and surface runoff across all sites removed an average of 16.1 and 2.6% of rainfall, respectively. Annual flow-weighted soluble P concentrations fluctuated with the precipitation, while concentrations tended to increase with high precipitation coupled with high application rates. The long-term average flow-weighted soluble P concentrations in subsurface flow were 102, 99, 194, and 86 microg L(-1) for sites A, B, C, and E, respectively. In contrast, the long-term average flow-weighted soluble P concentrations in surface runoff were 270, 253, 534, and 572 microg L(-1) for sites As, Bs, Cs, and Es, respectively. These values were substantially greater than the critical values that promote eutrophication. Statistical analysis indicated that the effects of crop, discharge, and the interactions between site and discharge and crop and discharge on soluble P concentrations in subsurface flow were significant (alpha = 0.05). Soluble P mass loads in surface runoff responded to discharge more consistently than in the subsurface flow. Subsurface flow had substantially greater annual average soluble P mass loads than surface runoff due to greater flow volume.  相似文献   

5.
This study was designed to evaluate the improved version of the Root Zone Water Quality Model (RZWQM) using 6 yr (1992-1997) of field-measured data from a field within Walnut Creek watershed located in central Iowa. Measured data included subsurface drainage flows, NO3-N concentrations and loads in subsurface drainage water, and corn (Zea mays L.) and soybean [Glycine mar (L.) Merr.] yields. The dominant soil within this field was Webster (fine-loamy, mixed, superactive, mesic Typic Endoaquolls) and cropping system was corn-soybean rotation. The model was calibrated with 1992 data and was validated with 1993 to 1997 data. Simulations of subsurface drainage flow closely matched observed data showing model efficiency of 99% (EF = 0.99), and difference (D) of 1% between measured and predicted data. The model simulated NO3-N losses with subsurface drainage water reasonably well with EF = 0.8 and D = 13%. The simulated corn grain yields were in close agreement with measured data with D < 10%. Nitrogen-scenario simulations demonstrated that corn yield response function reached a plateau when N-application rate exceeded 90 kg ha(-1). Fraction of applied N lost with subsurface drainage water varied from 7 to 16% when N-application rate varied from 30 to 180 kg ha(-1) after accounting for the nitrate loss with no-fertilizer application. These results indicate that the RZWQM has the potential to simulate the impact of N application rates on corn yields and NO3-N losses with subsurface drainage flows for agricultural fields in central Iowa.  相似文献   

6.
Rainfall can transport herbicides from agricultural land to surface waters, where they become an environmental concern. Tile drainage can benefit crop production by removing excess soil water but tile drainage may also aggravate herbicide and nutrient movement into surface waters. Water management of tile drains after planting may reduce tile drainage and thereby reduce herbicide losses to surface water. To test this hypothesis we calculated the loss of three herbicides from a field with three water management systems: free drainage (D), controlled drainage (CD), and controlled drainage with subsurface irrigation (CDS). The effect of water management systems on the dissipation of atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine), metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazine-5(4H)-one), and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide] in soil was also monitored. Less herbicide was lost by surface runoff from the D and CD treatments than from CDS. The CDS treatment increased surface runoff, which transported more herbicide than that from D or CD treatments. In one year, the time for metribuzin residue to dissipate to half its initial value was shorter for CDS (33 d) than for D (43 d) and CD (46 d). The half-life of atrazine and metolachlor were not affected by water management. Controlled drainage with subsurface irrigation may increase herbicide loss through increased surface runoff when excessive rain is received soon after herbicide application. However, increasing soil water content in CDS may decrease herbicide persistence, resulting in less residual herbicide available for aqueous transport.  相似文献   

7.
Land application of wastewater has become an important disposal option for food-processing plants operating year-round. However, there are concerns about nutrient leaching from winter wastewater application on frozen soils. In this study, P and N leaching were compared between nongrowing season application of tertiary-treated wastewater plus growing season application of partially treated wastewater (NGS) vs. growing season application of partially treated wastewater (GS) containing high levels of soil P. As required by the Minnesota Pollution Control Agency (MPCA), the wastewater applied to the NGS fields during October through March was treated such that it contained < or =6 mg L(-1) total phosphorus (TP), < or =10 mg L(-1) NO3-N, and < or =20 mg L(-1) total Kjeldahl nitrogen (TKN). The only regulation for wastewater application during the growing season (April through September) was that cumulatively it did not exceed the agronomic N requirements of the crop in any sprayfield. Application of tertiary-treated wastewater during the nongrowing season plus partially treated wastewater during the growing season did not significantly increase NO3-N leaching compared with growing season application of nonregulated wastewater. However, median TP concentration in leachate was significantly higher from the NGS (3.56 mg L(-1)) than from the GS sprayfields (0.52 mg L(-1)) or nonirrigated sites (0.52 mg L(-1)). Median TP leaching loss was also significantly higher from the NGS sprayfields (57 kg ha(-1)) than from the GS (7.4 kg ha(-1)) or control sites (6.9 kg ha(-1)). This was mainly due to higher hydraulic loading from winter wastewater application and limited or no crop P uptake during winter. Results from this study indicate that winter application of even low P potato-processing wastewater to high P soils can accelerate P leaching. We conclude that the regulation of winter wastewater application on frozen soils should be based on wastewater P concentration and permissible loading. We also recommend that winter irrigation should take soil P saturation into consideration.  相似文献   

8.
Land application of wastewater in the northern-tier United States during winter months has been suggested as a means to reduce cost of building storage lagoons. A study was initiated in 1996 to assess land application of potato-processing wastewater on a 120-ha field at Park Rapids, MN. One objective of this study was to evaluate the effects of soil P levels and temperature on P leaching in soil columns. In this paper, we report the P sorption, desorption, and leaching characteristics of a high-P (>200 mg kg(-1)) and a low-P (<25 mg kg(-1)) surface soil from the wastewater irrigation site. The leaching experiment was done with wastewater at 4 +/- 2 or 10 +/- 2 degrees C. The high-P soil resulted in an equilibrium P concentration of 8.0 mg L(-1) compared with 0.14 mg L(-1) for the low-P soil. When low-P wastewater was applied to the high-P soil, the soil acted as a P source, and the total phosphorus (TP) concentration in the leachate was 3.5 times higher than the input TP concentration (C0). When high-P wastewater was applied to the high-P soil, the soil acted as a P sink retarding the TP concentration in the leachate by 80%. Phosphorus desorption was higher at 10 degrees C compared with 4 degrees C. The results showed that depending on P levels of the soil and the wastewater, reduction or increase in leachate P will occur below the surface soil. However, further mobility of this P under field conditions will depend on the volume and rate of percolating water as well as the sorption-desorption characteristics of the subsoil.  相似文献   

9.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   

10.
Total annual nutrient loads are a function of both watershed characteristics and the magnitude of nutrient mobilizing events. We investigated linkages among land cover, discharge and total phosphorus (TP) concentrations, and loads in 25 Kansas streams. Stream monitoring locations were selected from the Kansas Department of Health and Environment stream chemistry long-term monitoring network sites at or near U.S. Geological Survey stream gauges. We linked each sample with concurrent discharge data to improve our ability to estimate TP concentrations and loads across the full range of possible flow conditions. Median TP concentration was strongly linked (R 2 = 76%) to the presence of cropland in the riparian zones of the mostly perennial streams. At baseflow, discharge data did not improve prediction of TP, but at high flows discharge was strongly linked to concentration (a threshold response occurred). Our data suggest that on average 88% of the total load occurred during the 10% of the time with the greatest discharge. Modeled reductions in peak discharges, representing increased hydrologic retention, predicted greater decreases in total annual loads than reductions of ambient concentrations because high discharge and elevated phosphorus concentrations had multiplicative effects. No measure of land use provided significant predictive power for concentrations when discharge was elevated or for concentration rise rates under increasing discharge. These results suggest that reductions of baseflow concentrations of TP in streams without wastewater dischargers may be managed by reductions of cropland uses in the riparian corridor. Additional measures may be needed to manage TP annual loads, due to the large percentage of the TP load occurring during a few high-flow events each year.  相似文献   

11.
Phosphorus application in excess of crop needs has increased the concentration of P in surface soil and runoff and led many states to develop P-based nutrient management strategies. However, insufficient data are available relating P in surface soil, surface runoff, and subsurface drainage to develop sound guidelines. Thus, we investigated P release from the surface (0-5 cm depth) of a Denbigh silt loam from Devon, U.K. (30-160 mg kg-1 Olsen P) and Alvin, Berks, Calvin, and Watson soils from Pennsylvania (10-763 mg kg-1 Mehlich-3 P) in relation to the concentration of P in surface runoff and subsurface drainage. A change point, where the slopes of two linear relationships between water- or CaCl2-extractable soil P and soil test phosphorus (STP) (Olsen or Mehlich-3) meet, was evident for the Denbigh at 33 to 36 mg kg-1 Olsen P, and the Alvin and Berks soils at 185 to 190 mg Mehlich-3 P kg-1. Similar change points were also observed when STP was related to the P concentration of surface runoff (185 mg kg-1) and subsurface drainage (193 mg kg-1). The use of water and CaCl2 extraction of surface soil is suggested to estimate surface runoff P (r2 of 0.92 for UK and 0.86 for PA soils) and subsurface drainage P (r2 of 0.82 for UK and 0.88 for PA soils), and to determine a change point in STP, which may be used in support of agricultural and environmental P management.  相似文献   

12.
Artificially draining soils using subsurface tiles is a common practice on many agricultural fields. High levels of nitrate-nitrogen (NO-N) are often released from these systems; therefore, knowledge on the sources and processes controlling NO-N in drainage systems is needed. A dual isotope study (δN and δO) was used to investigate three subsurface drainage systems (shallow, conventional, and controlled) in Onslow, Nova Scotia, Canada. The objectives of this study were (i) to identify which drainage system more effectively reduced the NO-N loading, (ii) to examine differences in isotopic signatures under identical nutrient and cropping regimes for a fixed soil type, and (iii) to identify the utility of different drainage systems in controlling nutrient flows. Nitrate concentrations measured ranged from 0.92 to 11.8, from 2.3 to 17.3, and from 2.1 to 19.8 mg L for the shallow, conventional, and controlled drains, respectively. Total NO-N loading from shallow and controlled drains were 20 and 5.6 kg ha, respectively, lower than conventional (39.1 kg ha). The isotopic composition of NO-N for all drainage types appeared to be a mixture of two organic sources (manure and soil organic matter) via the process of nitrification. There was no evidence that denitrification played a significant role in removing NO-N during transport. Overall, shallow drainage reduced NO-N loading but offered no water conservation benefits. Combining the benefits of decreased NO-N loading from shallow systems with water control capability may offer the best solution to reducing nutrient loadings into water systems, achieving optimal crop yield, and decreasing drainage installation costs.  相似文献   

13.
Increasing land applications of biosolid wastes as soil amendments have raised concerns about potential toxic effects of associated metals on the environment. This study investigated the ability of biosolid colloids to transport metals associated with organic waste amendments through subsurface soil environments with leaching experiments involving undisturbed soil monoliths. Biosolid colloids were fractionated from a lime-stabilized, an aerobically digested, and a poultry manure organic waste and applied onto the monoliths at a rate of 0.7 cm/h. Eluents were monitored for Cu, Zn, Pb, and colloid concentrations over 16 to 24 pore volumes of leaching. Mass-balance calculations indicated significantly higher (up to 77 times) metal elutions in association with the biosolid colloids in both total and soluble fractions over the control treatments. Eluted metal loads varied with metal, colloid, and soil type, following the sequences Zn = Cu > Pb, and ADB > PMB > LSB colloids. Colloid and metal elution was enhanced by decreasing pH and colloid size, and increasing soil macroporosity and organic matter content. Breakthrough curves were mostly irregular, showing several maxima and minima as a result of preferential macropore flow and multiple clogging and flushing cycles. Soil- and colloid-metal sorption affinities were not reliable predictors of metal attenuation/elution loads, underscoring the dynamic nature of transport processes. The findings demonstrate the important role of biosolid colloids as contaminant carriers and the significant risk they pose, if unaccounted, for soil and ground water contamination in areas receiving heavy applications of biosolid waste amendments.  相似文献   

14.
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.  相似文献   

15.
Agricultural chemical transport to surface water and the linkage to other hydrological compartments, principally ground water, was investigated at five watersheds in semiarid to humid climatic settings. Chemical transport was affected by storm water runoff, soil drainage, irrigation, and how streams were linked to shallow ground water systems. Irrigation practices and timing of chemical use greatly affected nutrient and pesticide transport in the semiarid basins. Irrigation with imported water tended to increase ground water and chemical transport, whereas the use of locally pumped irrigation water may eliminate connections between streams and ground water, resulting in lower annual loads. Drainage pathways in humid environments are important because the loads may be transported in tile drains, or through varying combinations of ground water discharge, and overland flow. In most cases, overland flow contributed the greatest loads, but a significant portion of the annual load of nitrate and some pesticide degradates can be transported under base-flow conditions. The highest basin yields for nitrate were measured in a semiarid irrigated system that used imported water and in a stream dominated by tile drainage in a humid environment. Pesticide loads, as a percent of actual use (LAPU), showed the effects of climate and geohydrologic conditions. The LAPU values in the semiarid study basin in Washington were generally low because most of the load was transported in ground water discharge to the stream. When herbicides are applied during the rainy season in a semiarid setting, such as simazine in the California basin, LAPU values are similar to those in the Midwest basins.  相似文献   

16.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

17.
The effect of mechanically aerating grassland before liquid manure application in the fall on surface runoff and transport of nutrients and solids was studied in a high rainfall area. The two treatments were control and aeration, the latter receiving one pass with an aerator perpendicular to the slope before fall application of liquid manure (dairy in Years 1-3 and swine in Year 4). Treatments were randomly assigned on 3 to 5% sloping land with a silt loam surface soil (Aquic Dystroxerept) planted in orchardgrass (Dactylis glomerata L.). Runoff from natural rainfall events was sampled for nutrient and solids analysis. Aeration significantly reduced runoff and loads of suspended solids, total Kjeldahl N (TKN), and dissolved reactive P in all years. Annual runoff amounts were reduced by 47 to 81%, suspended and volatile solid loads by 48 to 69% and 42 to 83%, respectively, TKN loads by 56 to 81%, and total P (TP) loads by 25 to 75%. Loads of the soluble nutrient NH4-N, dissolved reactive P, and K were reduced by 41 to 83%. The first three runoff events after manure application accounted for approximately one-third of the annual total runoff and solid and nutrient loads when averaged across treatments, with loads of TKN, K, and NH4-N totaling 4.4, 3.3, and 1.9 kg ha-1, respectively. Aeration slightly increased downward movement of NO3-N, but not other nutrients in the soil. Thus mechanical aeration can be an effective tool for reducing runoff and loads of solids and nutrients after surface application of liquid manure on sloping grassland.  相似文献   

18.
Tile drainage significantly alters flow and nutrient pathways and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but few applications have evaluated the model's ability to simulate pathway‐specific flow components or nitrate‐nitrogen (NO3‐N) concentrations in tile‐drained watersheds at the daily time step. The objectives of this study were to develop and calibrate SWAT models for small, tile‐drained watersheds, evaluate model performance for simulation of flow components and NO3‐N concentration at daily intervals, and evaluate simulated soil‐nitrogen dynamics. Model evaluation revealed that it is possible to meet accepted performance criteria for simulation of monthly total flow, subsurface flow (SSF), and NO3‐N loads while obtaining daily surface runoff (SURQ), SSF, and NO3‐N concentrations that are not satisfactory. This limits model utility for simulating best management practices (BMPs) and compliance with water quality standards. Although SWAT simulates the soil N‐cycle and most predicted fluxes were within ranges reported in agronomic studies, improvements to algorithms for soil‐N processes are needed. Variability in N fluxes is extreme and better parameterization and constraint, through use of more detailed agronomic data, would also improve NO3‐N simulation in SWAT. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

19.
ABSTRACT: This paper is a computer simulation analysis of an agricultural nonpoint pollution problem. Computer modeling is a universally applicable tool that can be used for establishing the linkages between and the quality of agricultural runoff in both surface and subsurface flow. The tradeoffs between the costs of soil conservation practices and water quality are reported, and the economic implications of such tradeoffs are discussed. Soil and nutrient losses resulting from crop production practices are analyzed using a field-scale computer simulation model (CREAMS). No-till planting, reduced tillage, and sod waterway systems are more cost effective than other practices for controlling soil and nutrient runoff losses. Nitrate leaching losses are increased slightly by most soil conservation practices. Terrace systems and permanent vegetative cover impose the greatest societal cost for water quality protection. Public cost sharing and tax incentives encourage farmers to adopt expensive structural practices, and policies are needed to get cost-effective practices implemented on critical acreage. Extensive treatment of land is necessary for agricultural best management practices (BMPs) to significantly improve water quality in areas that are intensively farmed.  相似文献   

20.
ABSTRACT: Maintenance of the more than 24 million septic tanks in the U.S. requires removal and disposal of septage. Disposal options include application to agricultural lands where the nutrients and organic matter can provide soil benefits. However, pathogens and contaminants are also contained in septage. An extensive search turned up very few data on septage quality, and those reveal high variability. The data used by the U.S. Environmental Protection Agency (EPA) in developing regulations had the lowest metal concentrations among the nine data sets that could be compared. Based on these data, EPA assumed that septage could be applied to agricultural land for more than 100 applications before reaching unacceptable cumulative loading of metals. They thus did not establish federal standards for metals in septage, and no monitoring is required under federal rules governing septage disposal. Analysis of the nine data sets we found showed that field site life would be reached in less than 100 applications for most septage and cumulative loading limits established by EPA for sewage sludges will be exceeded in 16 applications for some septage as opposed to the 100 application estimate used by EPA. Determination of acceptable cumulative loading depends on numerous technical and policy considerations. All septage sources reached the more restrictive loading limits such as those established by the New York State Department of Environmental Conservation (NYSDEC) and the recommendations in Cornell publications in less than 100 applications. In one case the cumulative limit for copper was exceeded in a single application. These findings suggest additional data are needed on septage quality and that the federal and state agencies responsible for regulating application of septage to agricultural land should reassess their standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号