首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   5篇
安全科学   8篇
废物处理   3篇
环保管理   38篇
综合类   10篇
基础理论   41篇
污染及防治   30篇
评价与监测   6篇
社会与环境   3篇
灾害及防治   4篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   7篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   9篇
  2011年   11篇
  2010年   10篇
  2009年   5篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   7篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1968年   1篇
  1965年   2篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
81.
82.
Strategic directions for agent-based modeling: avoiding the YAAWN syndrome   总被引:1,自引:0,他引:1  
In this short communication, we examine how agent-based modeling has become common in land change science and is increasingly used to develop case studies for particular times and places. There is a danger that the research community is missing a prime opportunity to learn broader lessons from the use of agent-based modeling (ABM), or at the very least not sharing these lessons more widely. How do we find an appropriate balance between empirically rich, realistic models and simpler theoretically grounded models? What are appropriate and effective approaches to model evaluation in light of uncertainties not only in model parameters but also in model structure? How can we best explore hybrid model structures that enable us to better understand the dynamics of the systems under study, recognizing that no single approach is best suited to this task? Under what circumstances – in terms of model complexity, model evaluation, and model structure – can ABMs be used most effectively to lead to new insight for stakeholders? We explore these questions in the hope of helping the growing community of land change scientists using models in their research to move from ‘yet another model’ to doing better science with models.  相似文献   
83.
The application of stable hydrogen isotope (deltaD) techniques has swiftly advanced our understanding of animal movements, but this progression is dominated by studies of birds and relatively long-distance, north-south migrants. This dominance reflects the challenge of incorporating multiple sources of error into geographic assignments and the nature of spatially explicit deltaD models, which possess greater latitudinal than longitudinal resolution. However, recent progress in likelihood-based assignments that incorporate multiple sources of isotopic error and Bayesian approaches that include additional sources of information may advance finer-scale understanding of animal movements. We develop a stable-isotope method for determining probable origins of bats within hibernacula and show that this method produces spatially explicit, continuous assignments with regional resolution. We outline how these assignments can be used to infer hibernacula connectivity, an application that could inform spatial modeling of white-nose syndrome. Additionally, estimates of seasonal and annual flight distances for many cave-dwelling bat species can be derived from this approach. We also discuss how this application can be used in general to provide insights into variable migratory and foraging strategies within bat populations.  相似文献   
84.
Post-treatment of leachate from soil-washing remedial actions may be necessary depending on the amounts of dissolved contaminants present. Uptake of arsenic species by surfactant-modified zeolite (SMZ) from a synthetic soil leachate (pH of approximately 12 [NaOH]) was measured as a test of SMZ as a post-treatment sorbent. Batch sorption isotherms were prepared using leachate to SMZ ratios from 40:1 to 4:1, and temperatures of 25 and 15 degrees C. Equilibrium levels of dissolved and total solution arsenic were similar. At each temperature, sorption appeared to reach a plateau or maximum, then decreased at the highest solution concentration, corresponding to the lowest amount of zeolite added (2.5 g). A maximum sorption value of 72.0 mmol of arsenic per kg of SMZ (5400 mg/kg) was observed at 25 degrees C, and 42.1 mmol/kg (3150 mg/kg) at 15 degrees C. Total arsenic recoveries varied from 74 to 125%. Surfactant-modified zeolite removed up to 97% of dissolved organic carbon and decolorized the leachate solutions. Excluding the points for the highest arsenic to SMZ ratio, the sorption isotherms were well described by the linearized form of the Langmuir equation, with coefficients of determination greater than 0.90 at both temperatures. Sorption of arsenic by SMZ is attributed to anion exchange with counterions on the surfactant head groups, and/or partitioning of organic carbon-complexed arsenic into the surfactant bilayer.  相似文献   
85.
We examined the metabolic response of an estuarine benthic community to additions of three materials being considered for use in manufacture of biodegradable substitutes for plastics. Diver-collected cores containing benthos were dosed with 59 g/m2 of three test materials, cornstarch, a bacterial polyester (PHBV), and ethylene vinyl alcohol (EVOH), or left undisturbed as controls. Fluxes of dissolved nutrients (ammonia, nitrate + nitrite, phosphate, silica) and dissolved inorganic carbon (DIC) were similar in control cores and cores dosed with EVOH during a 1-month test period at 20°C. Fluxes in cores dosed with starch and PHBV differed significantly from controls but not from each other. After 2 weeks of incubation, production of DIC was higher in cores containing starch and PHBV, while efflux of ammonia, nitrate, and nitrite was reduced. After 4 weeks of incubation, production of DIC was similar among all treatments and controls, while efflux of ammonia was high in the starch- and PHBV-containing cores compared to controls and cores with EVOH. Fluxes of silica and phosphate were similar in all cores during the experiment. These results indicate that both starch and PHBV are carbon-rich substrates readily metabolized by the benthic community but that their presence significantly alters normal nutrient exchange patterns. This response is expected because of the high carbon-to-nitrogen ratio of starch and PHBV and indicates that impacts of these two materials would be similar. However, the high biological oxygen demand of such materials and resulting disturbance of normal nutrient regeneration patterns of the benthos (delayed ammonia efflux and potential stimulation of denitrification) must be considered in developing strategies for their disposal.Paper presented at the Biodegradable Materials and Packaging Conference, September 22–23, 1993, Natick, Massachusetts.  相似文献   
86.
Toxin content (fmol cell–1) and a suite of elemental and macromolecular variables were measured in batch cultures of the dinoflagellatesAlexandrium fundyense, A. tamarense andAlexandrium sp. from the southern New England region, USA. A different perspective was provided by semicontinuous cultures which revealed sustained, steady-state physiological adaptations by cells to N and P limitation. Two types of variability were investigated. In batch culture, changes in nutrient availability with time caused growth stage variability in toxin content, which often peaked in mid-exponential growth. A second type of variability that could be superimposed on growth stage differences is best exemplified by the high toxin content of cells grown at suboptimal temperatures. Calculations of the net rate of toxin production (R tox ; fmol cell–1 d–1) for these different culture treatments and modes made it possible to separate the dynamics of toxin production from cell division. Over a wide range of growth rates, cells produced toxin at rates approximating those needed to replace losses to daughter cells during division. The exception to this direct proportionality was with P limitation, which was associated with a dramatic increase in the rate of toxin production as cells stopped dividing due to nutrient limitation in batch culture. Growth stage variability in batch culture thus reflects small imbalances (generally within a factor of two) between the specific rates of toxin production and cell division. N limitation and CO2 depletion both affect pathways involved in toxin synthesis before those needed for cell division; P limitation does the opposite. The patterns of toxin accumulation were the same as for major cellular metabolites or elemental pools. The highest rates of toxin production appear to result from an increased availability of arginine (Arg) within the cell, due to either a lack of competition for this amino acid from pathways involved in cell division or to increased de novo synthesis. There were no significant changes in toxin content with either acclimated growth at elevated salinity, or with short term increases or decreases of salinity. These results demonstrate that toxin production is a complex process which, under some conditions, is closely coupled to growth rate; under other conditions, these processes are completely uncoupled. Explanations for the observed variability probably relate to pool sizes of important metabolites and to the differential response of key biochemical reactions to these pool sizes and to environmental conditions.  相似文献   
87.
Activities of lactate dehydrogenase (LDH), pyruvate kinase (PK), malate dehydrogenase (MDH) and citrate synthase (CS) were measured in the white skeletal muscle of marine fishes having different depths of occurrence and different feeding and locomotory strategies. There were significant depth-related differences in the two glycolytic enzymes, LDH and PK. LDH activity was most variable, and differed by 3 orders of magnitude between the most active shallow-living species and certain deep-sea fishes likely to have only minimal capacities for active locomotion. Superimposed on the depth-related patterns was a high degree of interspecific variation (up to 20-fold) in enzymic activity among species from any given range of depth of occurrence. Variation of both LDH and PK activities, noted for shallow- and deep-living fishes, seems to be largely accounted for by differences in feeding habits and locomotory performance. Active pelagic swimmers have much higher activities of LDH and PK than, for example, deep-living sit-and-wait predators. Benthopelagic fishes like rattails and the sablefish have the highest activities found among deep-living fishes, suggesting that these species engage in relatively active food-searching behavior compared to most other deep-sea fishes. The activity of CS, an enzyme of the citric acid cycle and an indicator of aerobic metabolism, varied little among species. Thus, the large interspecific variation in glycolytic potential (LDH and PK) among species is not associated with a similar variation in aerobic metabolism of white muscle. The much higher and more variable activity of MDH relative to CS suggests that, in addition to its function in the citric acid cycle, MDH may play an important role in redox balance in fish white muscle. In a comparison of white muscle composition between the shallow- and deep-living species, water content did not differ significantly, but protein content was significantly higher in shallow- than in deep-living fishes (211 and 130 mg g-1 wet wt of muscle, respectively). The differences in muscle protein content are small relative to the differences between shallow- and deep-living species in LDH, PK and MDH activities. Thus, depthrelated differences in muscle enzymic activity are caused by factors other than enzyme dilution. Enzyme activities (LDH, PK and CS) in brain tissue were relatively constant among species regardless of depth of occurrence or feeding and locomotory habits. Habitat and lifestyle do not seem to influence the demands for overall metabolic function in brain. The utility of muscle enzymic activity data for making predictions about the ecological characteristics of difficult-to-observe, deep-living, fishes is discussed.  相似文献   
88.
89.
On the basis of theoretical considerations, population-based nutrition surveys of 30 clusters of 30 children should provide reasonably valid estimates of the prevalence of malnutrition with at least 95 per cent confidence that the estimated prevalence differs from the true value by no more than 5 per cent. In areas of famine in Africa, where an urgent need often exists for rapid nutritional assessment to determine the extent and severity of the problem, visiting 30 sites is often logistically difficult. To determine the effects of using fewer than 30 clusters on the validity and precision of the estimated level of undernutrition, we used data from the 1983 Swaziland National Nutrition Survey and from rapid nutrition surveys performed in 1984 and 1985 in Burkina Faso, Guinea, and Niger. Fewer than 30 clusters may result in point prevalence estimates that differ dramatically from the true prevalence and, in most instances, are less precise. In contrast, little is gained by collecting more than 30 clusters. In summary, around 30 clusters provides relatively valid and precise estimates of the prevalence of undernutrition, and every effort should be made to obtain the logistic support required to study this number of clusters.  相似文献   
90.
Co-produced water from the oil and gas industry accounts for a significant waste stream in the United States. This "produced water" is characterized by saline water containing a variety of pollutants, including water soluble and immiscible organics and many inorganic species. To reuse produced water, removal of both the inorganic dissolved solids and organic compounds is necessary. In this research, the effectiveness of a pretreatment system consisting of surfactant modified zeolite (SMZ) adsorption followed by a membrane bioreactor (MBR) was evaluated for simultaneous removal of carboxylates and hazardous substances, such as benzene, toluene, ethylbenzene, and xylenes (BTEX) from saline-produced water. A laboratory-scale MBR, operated at a 9.6-hour hydraulic residence time, degraded 92% of the carboxylates present in synthetic produced water. When BTEX was introduced simultaneously to the MBR system with the carboxylates, the system achieved 80 to 95% removal of BTEX via biodegradation. These results suggest that simultaneous biodegradation of both BTEX and carboxylate constituents found in produced water is possible. A field test conducted at a produced water disposal facility in Farmington, New Mexico confirmed the laboratory-scale results for the MBR and demonstrated enhanced removal of BTEX using a treatment train consisting of SMZ columns followed by the MBR. While most of the BTEX constituents of the produced water adsorbed onto the SMZ adsorption system, approximately 95% of the BTEX that penetrated the SMZ and entered the MBR was biodegraded in the MBR. Removal rates of acetate (influent concentrations of 120 to 170 mg/L) ranged from 91 to 100%, and total organic carbon (influent concentrations as high as 580 mg/L) ranged from 74 to 92%, respectively. Organic removal in the MBR was accomplished at a low biomass concentration of 1 g/L throughout the field trial. While the transmembrane pressure during the laboratory-scale tests was well-controlled, it rose substantially during the field test, where no pH control was implemented. The results suggest that pretreatment with an SMZ/MBR system can provide substantial removal of organic compounds present in produced water, a necessary first step for many water-reuse applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号