首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   1篇
  国内免费   3篇
安全科学   6篇
废物处理   7篇
环保管理   3篇
综合类   9篇
基础理论   15篇
污染及防治   95篇
评价与监测   21篇
社会与环境   2篇
  2023年   3篇
  2022年   26篇
  2021年   26篇
  2020年   7篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   4篇
  2015年   3篇
  2014年   6篇
  2013年   16篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   10篇
  2007年   9篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1995年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有158条查询结果,搜索用时 796 毫秒
91.
Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.  相似文献   
92.
The soil quality of urban parks is of vital importance as the children playing in the parks get themselves easily contaminated. A study was conducted to assess the level of elemental pollution caused by constant urbanization and industrialization, in various parks of Islamabad and Rawalpindi. The soil samples, collected from 14 urban parks of Islamabad and Rawalpindi areas, were analysed for their elemental concentrations. In each sample, 32 elements were quantified using semi-absolute k (0)-instrumental neutron activation analysis and flame atomic absorption spectrophotometry. The quality of analysis was assured by analysing the International Atomic Energy Agency (IAEA) reference material IAEA-S7 (soil). The pollution level was assessed by enrichment factor, pollution load index and our suggested indicator called "average toxic element concentration". The elemental concentrations measured in the parks of two cities were compared by t test. Four sources of different elements in the soils were identified by employing principal component analysis and cluster analysis. The results of multivariate techniques grouped all parks into four classes. The use of enrichment factor indicated the presence of Ni at slightly higher level in all parks while the pollution load index revealed that the parks of Rawalpindi were relatively more polluted as compared to that of Islamabad. The hot spot areas of elemental concentration were closely related to high traffic conditions.  相似文献   
93.
Environmental Chemistry Letters - The widespread use of antibiotics has led to an increase in the number of strains resistant to major antibacterial pharmaceuticals. Many...  相似文献   
94.
In an effort to determine vehicular impact on soil quality, soil samples were collected from three different zones (Pahalgam, Batakote, and Chandanwari) in Pahalgam forest ecosystem. Results showed that a significant decrease in moisture content, organic carbon, available nitrogen, and potassium was observed in nearby road side soils. However, pH was observed to be on neutral side and available phosphorus recorded high concentration. The concentration of heavy metals Pb2+, Cu2+, Zn2+, Ni2+, and Cd2+ estimated was also significantly high. Furthermore, concentration of Pb2+ at high vehicular load subzones was observed to be highest (1.168 mg/Kg) followed by Zn2+ (0.896 mg/Kg), Ni2+ (0.649 mg/Kg), Cu2+ (0.415 mg/Kg), and Cd2+ (0.079 mg/Kg). An inter-zone analysis revealed that the concentration of the heavy metals (Pb2+?>?Ni2+?>?Cd2+) was observed to follow the trend, Z-I?>?Z-II?>?Z-III. Variation along the temporal gradient and the impact on soil qualities were notably higher in summer. Vehicular pollution to a great extent impacts physico-chemical characteristics and more interestingly adds substantial concentration of heavy metals in soils.  相似文献   
95.
Journal of Polymers and the Environment - This paper presents the effects of silane coupling agent, which includes interfacial adhesive strength, water treatment, polymer composites and coatings...  相似文献   
96.
Environmental Science and Pollution Research - Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; however, the pandemic crisis...  相似文献   
97.
Environmental Science and Pollution Research - This study analyzes the relationship between globalization, energy consumption, and economic growth among selected South Asian countries to promote...  相似文献   
98.
Different land uses in subtropics play an important role in regulating the global environmental changes. To reduce uncertainties of greenhouse gas (GHG) emissions of agricultural soils in subtropical ecosystem, a four years campaign was started to determine the temporal GHG (CO2 and CH4) fluxes from seven sites of four land use types (1 vegetable field, 3 uplands, 2 orchards, 1 pine forest). The mean annual budgets of CO2, and CH4 were 6.5~10.5 Mg CO2 ha?1 yr?1, and +0.47 ~ ?2.37 kg CH4 ha?1 yr?1, respectively. Pine forest had significantly lower CO2 emission and higher CH4 uptake than agriculture land uses. Tilled orchard emitted more CO2 and oxidized less CH4 than non-tilled orchard. Upland crops had higher CO2 emissions than orchards, while abrupt differences of CH4 uptake were observed between upland crops and orchards. Every year, the climate was warm and wet from April to September (the hot–humid season) and became cool and dry from October to March (the cool–dry season). Driven by seasonality of temperature and WFPS, CO2 fluxes were significantly higher in the hot–humid season than in cool–dry season. Soil temperature, WFPS, NO3?–N and NH4+–N contents interactively explained CH4 uptake which was significantly higher in cool–dry season than in hot–humid season. We conclude that soil C fluxes from different land uses are strongly under control of different climatic predictors along with soil nutrient status, which interact in conjunction with each other to supply the readily available substrates.  相似文献   
99.
100.
The textile industry, as recognized conformist and stake industry in the world’s economy, is facing serious environmental challenges. In numerous industries, in practice, various chemical-based processes from initial sizing to final washing are fascinating harsh environment concerns. Some of these chemicals are corrosive to equipment and cause serious damage itself. Therefore, in the twenty-first century, chemical and allied industries quest a paradigm transition from traditional chemical-based concepts to a greener, sustainable, and environmentally friendlier catalytic alternative, both at the laboratory and industrial scales. Bio-based catalysis offers numerous benefits in the context of biotechnological industry and environmental applications. In recent years, bio-based processing has received particular interest among the scientist for inter- and multi-disciplinary investigations in the areas of natural and engineering sciences for the application in biotechnology sector at large and textile industries in particular. Different enzymatic processes such as chemical substitution have been developed or in the process of development for various textile wet processes. In this context, the present review article summarizes current developments and highlights those areas where environment-friendly enzymatic textile processing might play an increasingly important role in the textile industry. In the first part of the review, a special focus has been given to a comparative discussion of the chemical-based “classical/conventional” treatments and the modern enzyme-based treatment processes. Some relevant information is also reported to identify the major research gaps to be worked out in future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号