首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   1篇
  国内免费   3篇
安全科学   1篇
废物处理   5篇
环保管理   7篇
综合类   4篇
基础理论   7篇
污染及防治   19篇
评价与监测   1篇
社会与环境   3篇
灾害及防治   1篇
  2023年   3篇
  2022年   5篇
  2021年   9篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
排序方式: 共有48条查询结果,搜索用时 359 毫秒
11.
Environmental Science and Pollution Research - The 2019 outbreak of corona virus disease began from Wuhan (China), transforming into a leading pandemic, posing an immense threat to the global...  相似文献   
12.
Environmental Science and Pollution Research - Neurodegeneration is the loss of neuronal capacity and structure over time which causes neurodegenerative disorders like Alzheimer, amyotrophic...  相似文献   
13.
• Eco-friendly IONPs were synthesized through solvothermal method. • IONPs show very high removal efficiency for CeO2 NPs i.e. 688 mg/g. • Removal was >90% in all synthetic and real water samples. • >80% recovery of CeO2 NPs through sonication confirms reusability of IONPs. Increasing applications of metal oxide nanoparticles and their release in the natural environment is a serious concern due to their toxic nature. Therefore, it is essential to have eco-friendly solutions for the remediation of toxic metal oxides in an aqueous environment. In the present study, eco-friendly Iron Oxide Nanoparticles (IONPs) are synthesized using solvothermal technique and successfully characterized using scanning and transmission electron microscopy (SEM and TEM respectively) and powder X-Ray diffraction (PXRD). These IONPs were further utilized for the remediation of toxic metal oxide nanoparticle, i.e., CeO2. Sorption experiments were also performed in complex aqueous solutions and real water samples to check its applicability in the natural environment. Reusability study was performed to show cost-effectiveness. Results show that these 200 nm-sized spherical IONPs, as revealed by SEM and TEM analysis, were magnetite (Fe3O4) and contained short-range crystallinity as confirmed from XRD spectra. Sorption experiments show that the composite follows the pseudo-second-order kinetic model. Further R2>0.99 for Langmuir sorption isotherm suggests chemisorption as probable removal mechanism with monolayer sorption of CeO2 NPs on IONP. More than 80% recovery of adsorbed CeO2 NPs through ultrasonication and magnetic separation of reaction precipitate confirms reusability of IONPs. Obtained removal % of CeO2 in various synthetic and real water samples was>90% signifying that IONPs are candidate adsorbent for the removal and recovery of toxic metal oxide nanoparticles from contaminated environmental water samples.  相似文献   
14.
Environment, Development and Sustainability - The rapid population growth has rendered the centralized sewerage systems a non-realistic option in sparsely populated areas, particularly in...  相似文献   
15.
Present investigation deals with the utilisation of bagasse fly ash (BFA) (generated as a waste material from bagasse fired boilers) and the use of activated carbons-commercial grade (ACC) and laboratory grade (ACL), as adsorbents for the removal of congo red (CR) from aqueous solutions. Batch studies were conducted to evaluate the adsorption capacity of BFA, ACC and ACL and the effects of initial pH (pH(0)), contact time and initial dye concentration on adsorption. The pH(0) of the dye solution strongly affected the chemistry of both the dye molecules and BFA in an aqueous solution. The effective pH(0) was 7.0 for adsorption on BFA. Kinetic studies showed that the adsorption of CR on all the adsorbents was a gradual process. Equilibrium reached in about 4h contact time. Optimum BFA, ACC and ACL dosages were found to be 1, 20 and 2 g l(-1), respectively. CR uptake by the adsorbents followed pseudo-second-order kinetics. Equilibrium isotherms for the adsorption of CR on BFA, ACC and ACL were analysed by the Freundlich, Langmuir, Redlich-Peterson, and Temkin isotherm equations. Error analysis showed that the R-P isotherm best-fits the CR adsorption isotherm data on all adsorbents. The Freundlich isotherm also shows comparable fit. Thermodynamics showed that the adsorption of CR on BFA was most favourable in comparison to activated carbons.  相似文献   
16.
Trivedi N  Gupta V  Kumar M  Kumari P  Reddy CR  Jha B 《Chemosphere》2011,83(5):706-712
The organic solvent tolerant bacteria with their physiological abilities to decontaminate the organic pollutants have potentials to secrete extracellular enzymes of commercial importance. Of the 19 marine bacterial isolates examined for their solvent tolerance at 10 vol.% concentration, one had the significant tolerance and showed a relative growth yield of 86% for acetone, 71% for methanol, 52% for benzene, 35% for heptane, 24% for toluene and 19% for ethylacetate. The phylogenetic analysis of this strain using 16S rDNA sequence revealed 99% homology with Bacillus aquimaris. The cellulase enzyme secreted by this strain under normal conditions showed an optimum activity at pH 11 and 45 °C. The enzyme did show functional stability even at higher pH (12) and temperature (75 °C) with residual activity of 85% and 95% respectively. The enzyme activity in the presence of different additives were in the following order: Co+2 > Fe+2 > NaOCl2 > CuSO4 > KCl > NaCl. The enzyme stability in the presence of solvents at 20 vol.% concentration was highest in benzene with 122% followed by methanol (85%), acetone (75%), toluene (73%) and heptane (42%). The pre-incubation of enzyme in ionic liquids such as 1-ethyl-3-methylimidazolium methanesulfonate and 1-ethyl-3-methylimidazolium bromide increased its activity to 150% and 155% respectively. The change in fatty acid profile with different solvents further elucidated the physiological adaptations of the strain to tolerate such extreme conditions.  相似文献   
17.
The redox-sensitive elements, such as iron, manganese, sulfur, phosphorus, and arsenic, shift their speciation every millimeter (mm) across the soil-water interface in the flooded soil environments. Monitoring of element speciation at this high-resolution (HR) within the SWI is still difficult. The key challenge lies in obtaining sufficient porewater samples at specific locations along the soil gradient for downstream analysis. Here with an optimized inductively coupled plasma mass spectrometry (ICP-MS) method and a HR porewater sampler, we demonstrate mm-scale element profiles mapping across the SWI in paddy soils. High-concentrations of iron and manganese (> 10 mg/L) were measured by ICP-MS in an extended dynamic range mode to avoid signal overflow. The iron profile along the SWI generated by the ICP-MS method showed no significant difference (p < 0.05) compared to that measured independently using a colorimetric method. Furthermore, four arsenic (arsenite, arsenate, monomethylarsonic and dimethylarsinic acid), two phosphorus (phosphite and phosphate) and two sulfur (sulfide and sulfate) species were separated in 10 min by ion chromatography -ICP-MS with the NH4HCO3 mobile phase. We verified the technique using paddy soils collected from the field, and present the mm-scale profiles of iron, manganese, and arsenic, phosphorus, sulfur species (relative standard deviation < 8%). The technique developed in this study will significantly promote the measurement throughput in limited samples (e.g. 100 μL) collected by HR samplers, which would greatly facilitate redox-sensitive elements biogeochemical cycling in saturated soils.  相似文献   
18.
N-doped mesoporous alumina has been synthesized using chitosan as the biopolymer template. The adsorbent has been thoroughly investigated for the adsorption of CO2 from a simulated flue gas stream (15% CO2 balanced with N2) and compared with commercially available mesoporous alumina procured from SASOL, Germany. CO2 adsorption was studied under different conditions of pre-treatment and adsorption temperature, inlet CO2 concentration and in the presence of oxygen and moisture. The adsorption capacity was determined to be 29.4 mg CO2/g of adsorbent at 55℃. This value was observed to be 4 times higher in comparison to that of commercial mesoporous alumina at a temperature of 55℃. Basicity of alumina surface coupled with the presence of nitrogen in template in synthesized sample is responsible for this enhanced CO2 adsorption. Adsorption capacity for CO2 was retained in the presence of oxygen; however moisture had a deteriorating effect on the adsorption capacity reducing it to nearly half the value.  相似文献   
19.
Environmental Science and Pollution Research - Remote sensing and GIS technology were very helpful to determine an appropriate location of freshwater storage in Amhara, Ethiopia. The techniques...  相似文献   
20.
Plankton diversity and physico-chemical parameters are an important criterion for evaluating the suitability of water for irrigation and drinking purposes. In this study we tried to assess the zooplankton species richness, diversity and evenness and to predict the state of three perennial ponds according to physico-chemical parameters. A total of 47 taxa were recorded: 24 rotifers, 9 copepods, 8 cladocerans, 4 ostracods and 2 protozoans. More number of zooplankton species were recorded in Chinnapperkovil pond (47 species) followed by Nallanchettipatti (39 species) and Kadabamkulam pond (24 species). Among the rotifers, Branchionus sp. is abundant. Diaphanosoma sp. predominant among the cladocerans. Among copepods, numerical superiority was found in the case of Mesocyclopes sp. Cypris sp. repeated abundance among ostracoda. Present study revealed that zooplankton species richness (R1 and R2) was comparatively higher (R1: 4.39; R2: 2.13) in Chinnapperkovil pond. The species diversity was higher in the Chinnapperkovil pond (H': 2.53; N1: 15.05; N2: 15.75) as compared to other ponds. The water samples were analyzed for temperature, pH, electrical conductivity alkalinity salinity, phosphate, hardness, dissolved oxygen and biological oxygen demand. Higher value of physico-chemical parameters and zooplankton diversity were recorded in Chinnapperkovil pond as compared to other ponds. The zooplankton population shows positive significant correlation with physico-chemical parameters like, temperature, alkalinity phosphate, hardness and biological oxygen demand, whereas negatively correlated with rainfall and salinity. The study revealed that the presence of certain species like, Monostyla sp., Keratella sp., Lapadella sp., Leydigia sp., Moinodaphnia sp., Diaptomus sp., Diaphanosoma sp., Mesocyclopes sp., Cypris sp. and Brachionus sp. is considered to be biological indicator for eutrophication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号