首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   6篇
安全科学   4篇
环保管理   5篇
基础理论   15篇
污染及防治   3篇
评价与监测   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2015年   3篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有28条查询结果,搜索用时 312 毫秒
11.
Population sinks present unique conservation challenges. The loss of individuals in sinks can compromise persistence; but conversely, sinks can improve viability by improving connectivity and facilitating the recolonization of vacant sources. To assess the contribution of sinks to regional population persistence of declining populations, we simulated source–sink dynamics for 3 very different endangered species: Black‐capped Vireos (Vireo atricapilla) at Fort Hood, Texas, Ord's kangaroo rats (Dipodomys ordii) in Alberta, and Northern Spotted Owls (Strix occidentalis caurina) in the northwestern United States. We used empirical data from these case studies to parameterize spatially explicit individual‐based models. We then used the models to quantify population abundance and persistence with and without long‐term sinks. The contributions of sink habitats varied widely. Sinks were detrimental, particularly when they functioned as strong sinks with few emigrants in declining populations (e.g., Alberta's Ord's kangaroo rat) and benign in robust populations (e.g., Black‐capped Vireos) when Brown‐headed Cowbird (Molothrus ater) parasitism was controlled. Sinks, including ecological traps, were also crucial in delaying declines when there were few sources (e.g., in Black‐capped Vireo populations with no Cowbird control). Sink contributions were also nuanced. For example, sinks that supported large, variable populations were subject to greater extinction risk (e.g., Northern Spotted Owls). In each of our case studies, new context‐dependent sinks emerged, underscoring the dynamic nature of sources and sinks and the need for frequent re‐assessment. Our results imply that management actions based on assumptions that sink habitats are generally harmful or helpful risk undermining conservation efforts for declining populations.  相似文献   
12.
The methods used to simulate flood inundation extents can be significantly improved by high‐resolution spatial data captured over a large area. This paper presents a hydraulic analysis methodology and framework to estimate national‐level floodplain changes likely to be generated by climate change. The hydraulic analysis was performed using existing published Federal Emergency Management Agency 100‐year floodplains and estimated 100‐ and 10‐year return period peak flow discharges. The discharges were estimated using climate variables from global climate models for two future growth scenarios: Representative Concentration Pathways 2.6 and 8.5. River channel dimensions were developed based on existing regional United States Geological Survey publications relating bankfull discharges with channel characteristics. Mathematic relationships for channel bankfull topwidth, depth, and side slope to contributing drainage area measured at model cross sections were developed. The proposed framework can be utilized at a national level to identify critical areas for flood risk assessment. Existing hydraulic models at these “hot spots” could be repurposed for near–real‐time flood forecasting operations. Revitalizing these models for use in simulating flood scenarios in near–real time through the use of meteorological forecasts could provide useful information for first responders of flood emergencies.  相似文献   
13.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   
14.
Circuit-theory applications to connectivity science and conservation   总被引:1,自引:0,他引:1  
Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.  相似文献   
15.
Ambio - This review provides a synopsis of the main findings of individual papers in the special issue Terrestrial Biodiversity in a Rapidly Changing Arctic. The special issue was developed to...  相似文献   
16.
The Arctic is undergoing biological and environmental changes, and a coordinated effort to monitor is critical to detect these changes. The Circumpolar Biodiversity Monitoring Programme (CBMP) of the Arctic Council biodiversity working group, Conservation of Arctic Flora and Fauna (CAFF), has developed pan-Arctic biodiversity monitoring plans that aims to improve the ability to detect and report on long-term changes. Whilst introducing this special issue, this paper also presents the making of the terrestrial monitoring plan and discusses how the plan follows the steps required for an adaptive and ecosystem-based monitoring programme. In this article, we discuss how data on key findings can be used to inform circumpolar and global assessments, including the State of the Arctic Terrestrial Biodiversity Report, which will be the first terrestrial assessment made by the CBMP. Key findings, advice for future monitoring and lessons learned will be used in planning next steps of pan-Arctic coordinated monitoring.  相似文献   
17.
18.
Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate‐induced species’ movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species’ movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving‐window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species’ dispersal capabilities. We compared connectivity maps generated with our climate‐change‐informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present‐day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.  相似文献   
19.
Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.  相似文献   
20.
Public lands and waters in the United States traditionally have been managed using frameworks and objectives that were established under an implicit assumption of stable climatic conditions. However, projected climatic changes render this assumption invalid. Here, we summarize general principles for management adaptations that have emerged from a major literature review. These general principles cover many topics including: (1) how to assess climate impacts to ecosystem processes that are key to management goals; (2) using management practices to support ecosystem resilience; (3) converting barriers that may inhibit management responses into opportunities for successful implementation; and (4) promoting flexible decision making that takes into account challenges of scale and thresholds. To date, the literature on management adaptations to climate change has mostly focused on strategies for bolstering the resilience of ecosystems to persist in their current states. Yet in the longer term, it is anticipated that climate change will push certain ecosystems and species beyond their capacity to recover. When managing to support resilience becomes infeasible, adaptation may require more than simply changing management practices—it may require changing management goals and managing transitions to new ecosystem states. After transitions have occurred, management will again support resilience—this time for a new ecosystem state. Thus, successful management of natural resources in the context of climate change will require recognition on the part of managers and decisions makers of the need to cycle between “managing for resilience” and “managing for change.”  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号