首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   1篇
废物处理   3篇
环保管理   17篇
综合类   4篇
基础理论   30篇
污染及防治   37篇
评价与监测   31篇
社会与环境   7篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   15篇
  2012年   7篇
  2011年   10篇
  2010年   7篇
  2009年   10篇
  2008年   16篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1984年   1篇
  1980年   2篇
排序方式: 共有129条查询结果,搜索用时 625 毫秒
61.
Electro Thermal Atomic Absorption Spectrophotometry (ET-AAS), is used for the determination of chromium (Cr) in a variety of environmental matrices. The detection limit for the estimation of Cr is 2 pg absolute for a volume injection of 20 l. The precision of the method is established by analysing Cr from a synthetic mixture containing various elements in different qualities (0.5–10 ppm) and is found to be within ± 8%. The reliability of estimation is further assessed through the analysis of Standard Reference Materials (SRMs) of soil, hay, milk powder and lake sediment obtained from IAEA.The total intake of Cr through air, water and food works out to be 54 g/day for the adult population of Mumbai city. The dietary intake through food is the major contributor to the total intake of Cr. The concentration of Cr in atmospheric air and drinking water collected from different suburbs showed geometric mean concentrations of 0.09 g/m3 and 0.3 g/l, respectively. The daily intake of Cr, though lower, is closer to the lower bound of the recommended value of 50–200 g/day.  相似文献   
62.
Cr(VI), a mutagenic and carcinogenic pollutant in industrial effluents, was effectively reduced by an indigenous tannery effluent isolate Staphylococcus arlettae strain Cr11 under aerobic conditions. The isolate could tolerate Cr(VI) up to 2000 and 5000 mg L−1 in liquid and solid media respectively. S. arlettae Cr11 effectively reduced 98% of 100 mg L−1 Cr(VI) in 24 h. Reduction for initial Cr(VI) concentrations of 500 and 1000 mg L−1 was 98% and 75%, respectively in 120 h. The isolate was also positive for siderophore, indole acetic acid, ammonia and catalase production, phosphate solubilization and biofilm formation in the presence and absence of Cr(VI). The isolate showed halotolerance (10% NaCl) and cross tolerance to other toxic heavy metals such as Hg2+, Ni2+, Cd2+ and Pb2+. Bacterial inoculation of Triticum aestivum in controlled petri dish and soil environment showed significant increase in percent germination, root and shoot length as well as dry and wet weight in Cr(VI) treated and untreated samples. This is the first report of simultaneous Cr(VI) reduction and plant growth promotion for a S. arlettae strain.  相似文献   
63.
Plant available nitrogen, belowground (root) biomass, soil nitrogen (N) mineralization and microbial biomass N (MBN) were studied for 12 years at the interval of 2 years (0, 2, 4, 6, 8, 10 and 12?years) and mine dump stability at the intervals of 6 years (0, 6 and 12?years) after re-vegetation on coal mine spoil site. Plant available nitrogen in revegetated mine spoil ranged from 4.51 to 6.59?μg?g(-1), net N-mineralization from 1.87 to 13.85?μg?g(-1)?month(-1), MBN from 10 to 22.63?μg?g(-1), and root biomass from 28 to 566 g(-2). Mining activity has caused a change in soil characteristics including plant available nutrients like nitrate-N, ammonium-N and phosphate-P by 70, 67, and 76?%, respectively, N-mineralization by 93?%, root biomass values by 97?% and MBN values by 91?% compared to forest ecosystems. Revegetation of mine spoil produced increase in root biomass values by 1.3, 7.6 and 17.2 times, mineral N values by 1.22, 1.43 and 1.79 times, N-mineralization values by 1.8, 5.2 and 12.6 times and MBN values by 1.6, 2.0, and 3.4 times in 2, 6 and 12?years, respectively. Below ground biomass was highly co-related with microbial biomass and plant available nutrients. N-mineralization, plant available nutrients and the clay content were positively correlated with age of revegetation (P?相似文献   
64.
Personal exposure measurement can serve as an effective tool to understand the effect of exposure to air pollutants. Alternatively, exposure assessment using pollutant concentrations in different microenvironments and accurate time–activity information for the subjects can provide good information regarding human integrated exposure. A panel of 18 healthy students of Indian Institute of Technology (IIT) Kanpur in the age group of 18 to 30 years participated in the personal exposure measurements for particulate matter, CO, NO2 and VOC during post-monsoon and pre-monsoon seasons. Overall, 432 h person exposure data was collected in this study. The major sources of particulate and gaseous co-pollutants were identified. These directly obtained personal exposure values were then compared to the indirectly estimated integrated exposure values. Personal and integrated exposures gave statistically similar results. Through this study, we have shown that integrated exposure values could closely estimate the personal exposure values for particulate matter that can significantly reduce time and cost involved in personal exposure studies. The lung parameters for all the subjects measured during the pre-monsoon and post-monsoon seasons showed statistically significant reduction during pre-monsoon. This was attributed to the high levels of coarse particles during pre-monsoon.  相似文献   
65.
66.
A study was performed selecting one protected forest and an adjacent degraded forest ecosystem to quantify the impact of forest degradation on soil inorganic nitrogen, fine root production, nitrification, N-mineralization and microbial biomass N. There were marked seasonal variations of all the parameters in the upper 0–10 and lower 10–20 cm depths. The seasonal trend of net nitrification and net N-mineralization was reverse of that for inorganic nitrogen and microbial biomass N. Net nitrification, net N-mineralization and fine root biomass values were highest in both forests during rainy season. On contrary, inorganic nitrogen and microbial biomass N were highest during summer season. There was a marked impact of forest degradation on inorganic nitrogen, fine root production nitrification, N-mineralization and microbial biomass observed. Soil properties also varied with soil depth. Fine root biomass, nitrification, N-mineralization and microbial biomass N decreased significantly in higher soil depth. Degradation causes decline in mean seasonal fine root biomass in upper layer and in lower depth by 37% and 27%, respectively. The mean seasonal net nitrification and N-mineralization in upper depth decreased by 42% and 37%, respectively and in lower depth by 42.21% and 39% respectively. Similarly microbial biomass N also decreased by 31.16% in upper layer 33.19% in lower layer.  相似文献   
67.
This paper provides baseline information about the total annual dust fall, and its constituents and seasonal variation, from a sub-tropical opencast coalmine area in Bina, India. Dust samples were collected monthly for 2 years (June 2002-May 2004) from five sampling sites in the region and analyzed in the laboratory for water-soluble and -insoluble matter. Water-insoluble components constituted the major fraction of the total annual dust fall. Two-way ANOVA indicated significant variations in dust fall at different sites, over the months and in their interactions. The dust deposition rate was highest during summer (March-June), followed by winter (November-February) and lowest in the rainy season (July-October). Maximum dust fall was observed near the coal handling plant (at site 2) followed by the receiving pit of the coal handling plant (site 3), near the main sub-station (site 4), Jawahar colony (site 1) and Gharasari village (site 5). An inverse and significant relation was observed between dust fall and precipitation. Our studies have shown that the main residential areas are experiencing higher levels of dust fall which makes them unsuitable for living. We suggest that residential areas should be moved farther away from the mining area in the opposite direction of prevalent winds.  相似文献   
68.
The objective of the present study was to evince the long-term changes after natural revegetation and experimental revegetation of the coal mine spoils with respect to total plant biomass, available plant nutrients, nitrogen transformation and microbial biomass N (MBN) in dry tropical environment of India. Total plant biomass (above- and below-ground), plant available nitrogen, soil nitrogen mineralization and microbial biomass N (MBN) were studied for 2 years in 5 and 10 years old naturally vegetated and revegetated coal mine spoils, and dry tropical forest ecosystem of India. In forest ecosystem, the above ground biomass values ranged from 3,520 to 3,630 kg ha(-1) and belowground from 6,280 to 6,560 kg ha(-1). Plant available nitrogen ranged from 16.76 to 23.21 microg g(-1), net N-mineralization from 9.8 to 48.53 microg g(-1) month(-1) and MBN from 26.4 to 80.02 microg g(-1). In naturally revegetated mine spoil, the above ground biomass values ranged from 1,036 to 1,380 kg ha(-1) and belowground from 2,538 to 3,380 kg ha(-1). Plant available nitrogen ranged from 7.33-17.14 microg g(-1), net N-mineralization from 3.1 to 12.46 microg g(-1) month(-1) and MBN from 14.2 to 35.44 microg g(-1). In revegetated mine spoil, the above ground biomass values ranged from 1,224 to 1,678 kg ha(-1) and belowground from 2,870 to 4,130 kg ha(-1). Plant available nitrogen ranged from 9.4 to 18.83 microg g(-1), net N-mineralization from 4.2 to 16.2 microg g(-1) month(-1) and MBN from 21.6 to 42.6 microg g(-1). The mean plant biomass values in 5 and 10 years mine spoils was lower compared to forest ecosystem by 2.5 and 2 times, respectively. N-mineralization value in 5 year mine spoil was 3.5 times lower and in 10 years mine spoil 2 times lower compared to forest ecosystem. The MBN value was about 2 times lower in both 5 and 10 year mine spoils compared to native forest. MBN was positively related to the re-vegetation age of the mine spoil.  相似文献   
69.
Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm3 motor car and 3,455-cm3 vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C18 column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants.  相似文献   
70.
Occurrence of phthalic acid esters in Gomti River Sediment, India   总被引:2,自引:0,他引:2  
Cadmium and lead are important environmental pollutants with high toxicity to animals and human. Soils, though have considerable metal immobilizing capability, can contaminate food chain via plants grown upon them when their built-up occurs to a large extent. Present experiment was carried out with the objective of quantifying the limits of Pb and Cd loading in soil for the purpose of preventing food chain contamination beyond background concentration levels. Two separate sets of pot experiment were carried out for these two heavy metals with graded levels of application doses of Pb at 0.4–150 mg/kg and Cd at 0.02–20 mg/kg to an acidic light textured alluvial soil. Spinach crop was grown for 50 days on these treated soils after a stabilization period of 2 months. Upper limit of background concentration levels (C ul) of these metals were calculated through statistical approach from the heavy metals concentration values in leaves of spinach crop grown in farmers’ fields. Lead and Cd concentration limits in soil were calculated by dividing C ul with uptake response slope obtained from the pot experiment. Cumulative loading limits (concentration limits in soil minus contents in uncontaminated soil) for the experimental soil were estimated to be 170 kg Pb/ha and 0.8 kg Cd/ha. Based on certain assumptions on application rate and computed cumulative loading limit values, maximum permissible Pb and Cd concentration values in municipal solid waste (MSW) compost were proposed as 170 mg Pb/kg and 0.8 mg Cd/kg, respectively. In view of these limiting values, about 56% and 47% of the MSW compost samples from different cities are found to contain Pb and Cd in the safe range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号