首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   15篇
  国内免费   32篇
安全科学   56篇
废物处理   1篇
环保管理   6篇
综合类   42篇
基础理论   7篇
污染及防治   18篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   4篇
  2020年   8篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   5篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1997年   3篇
  1995年   2篇
  1992年   2篇
排序方式: 共有130条查询结果,搜索用时 109 毫秒
21.
颗粒活性炭吸附染料的类分形动力学特征的研究   总被引:1,自引:0,他引:1  
建立了复杂分子吸附反应时指数h与分形子谱维数ds、分形介质的表面分形维数Ds 的关系式.对吸附动力学数据的模拟表明,不同温度下6种染料在颗粒活性炭表面的吸附过程符合非线性动力学.吸附速率一般随着温度的升高而增加,反应活化能在0 2 0~1 75kJ·mol- 1 之间.上述反应为快速反应.进一步分析表明,该吸附过程具有类分形动力学特征,吸附反应的逐时速率系数k与反应时间t呈指数关系;相应的分形子谱维数ds<2 .随着染料的初始浓度的增加,ds 也随之增加,而h和k0 值通常会随之降低.吸附3种酸性染料时,h和k0 值在本实验的温度范围内均随着温度的升高而增加;其它3种直接性染料也大都呈现h随着温度的升高而增加的趋势.上述吸附反应中有效反应级数x也与ds、Ds 有关,呈现分数反应级数  相似文献   
22.
含油污泥薄层干燥特性及动力学模型分析   总被引:2,自引:0,他引:2  
采用薄层干燥方式进行含油污泥热干燥的研究,引入薄层干燥模型对含油污泥干燥过程进行模拟,结果表明,Midilli模型比其他模型更适合含油污泥的薄层干燥分析。应用Fick扩散模型,得到80~140℃条件下含油污泥干燥的有效扩散系数变化范围为1.08×10-10~4.22×10-10 m2/s,其值随着温度升高而增大。根据Arrhenius经验公式建立温度与扩散系数的关系,得到含油污泥干燥时水分扩散的活化能为27.26kJ/mol。  相似文献   
23.
实验测定了林西矿肥煤样品30~900℃煤自燃全过程热动力学特征参数,得出:TG/DTG曲线显示煤样DTG初始临界温度45℃,干裂温度122℃,活性温度195℃,增速温度265℃,质量极大值温度342℃,着火温度465℃,最大热失重速率温度515℃和燃尽温度690℃;DSC曲线显示,煤样初始放热温度60℃、最大热释放速率温度511℃。结合TG-DTG-DSC曲线综合分析可知,煤温达到510℃左右时煤样反应最剧烈。由煤自燃标志气体测定实验系统得出:煤温130℃后CO,CO 2释放量迅速增加,210℃增加速度下降;CH 4,C 2 H 6含量变化具有规律性且两者变化相近;C 2 H 4出现温度为130℃;C 2 H 4/C 2 H 6比值在190~350℃有较强的规律性,呈上升趋势且上升速度较快;350℃之后,CH 4,C 2 H 6,C 2 H 4体积分数均开始急剧增大;C 2 H 4/CO与C 2 H 4/CO 2变化趋势大致相同,在130~350℃时缓慢增长,达到350℃后比值呈指数形式上升。经拟合曲线,得到活化能的3个突变点温度:70,180,220℃,其中180℃与交叉点温度相吻合。通过以上研究,得到了肥煤自燃全过程的热力学特征参数,为实际生产中防治煤自燃提供了理论依据。  相似文献   
24.
利用热重分析仪在空气气氛、不同的升温速率下对带壳稻谷粉和玉米粒粉进行了热重测试,依据热重实验数据,采用多种热解动力学分析方法计算了水稻和玉米的活化能数值并进行比较,结果表明水稻和玉米的热氧化反应活化能随着转化率出现先增加后降低的趋势,并在转化率为70%左右达到了极大值。  相似文献   
25.
"热水洗+臭氧氧化"联合工艺处理大颗粒油基岩屑   总被引:1,自引:0,他引:1  
陈红硕  刘阳生 《环境化学》2020,39(2):388-396
针对油基岩屑处理过程中的大颗粒部分(0.5—1 cm),研究了以"热水洗+臭氧氧化"为核心的联合工艺的处理效果,并分别对热水洗、臭氧氧化环节的工艺参数进行了优化.结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由15.8%降低到0.24%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液.通过对油基岩屑固相的表征发现,其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析.结果表明,其满足准一级反应动力学特征,反应活化能为14.421 kJ·mol~(-1).以"热水洗+臭氧氧化"为核心的联合工艺为大颗粒油基岩屑的无害化、资源化处理提供了一种参考.  相似文献   
26.
为解决页岩气开采过程中产生的油基岩屑的资源化、无害化处理问题,采用逆流萃取+臭氧氧化联合的方法对其进行处理,并分别对逆流萃取、臭氧氧化环节的工艺参数进行了优化。结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由原始的39.42%降低到0.18%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液。通过对油基岩屑固相的表征,发现其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析。结果表明,其满足一级反应动力学特征,反应活化能为6.194 kJ·mol~(-1)。以逆流萃取+臭氧氧化为核心的联合工艺为油基岩屑的资源化、无害化处理提供了参考。  相似文献   
27.
三峡库区典型流域水华暴发评价函数模型研究   总被引:1,自引:1,他引:0  
刘信安  湛敏  谢昭明 《环境科学》2006,27(4):669-674
藻类在光照充足时将无机磷酸和ADP转化为ATP以储备能量,外部条件改变时,则ATP可逆转换为ADP以释放能量.在此理论框架下根据三峡库区典型流域水华暴发时的现场监测数据研究了绿藻光合磷酸化的活化能ΔE、计算了库区流域中若干水系在不同水文条件下提供的有效能量Δe和综合营养指数TLI(Σ),并以ΔEΔe和TLI(Σ)为参数构建了预测和判断不同水域环境中水华是否暴发的水华暴发评价函数F,在考虑外部因素和内部因素对水华暴发影响程度的大量计算和分析的基础上,确定了ΔEΔe和TLI(Σ)的相关权重分别为a1=0.3,a2=0.3,a3=0.4.模型计算和实地验证表明:F比单纯的TLI(Σ)作为水华暴发或者水体富营养化的判据更合理,更有说服力和更具普适性.  相似文献   
28.
为探究单轴应力作用下煤氧化和传热特性,利用自制荷载加压煤自燃特性参数测定装置对炉体内长焰煤煤样进行程序升温。结合程序升温过程中煤临界温度Tc和Tg,对其进行阶段划分:阶段1为30℃~Tc;阶段2为Tc~Tg。计算了不同单轴应力下2个阶段煤表观活化能和平均耗氧速率。根据能量守恒得出程序升温过程煤导热系数随温度的变化,进一步分析煤导热系数与单轴应力的关系。结果表明:阶段1单轴应力为4 MPa时为临界轴压,煤表观活化能最大,平均耗氧速率最小;阶段2煤表观活化能和平均耗氧速率随单轴应力增大均呈抛物线变化,单轴应力为2.7 MPa时为临界轴压,煤表观活化能最大,平均耗氧速率最小;阶段1和2煤导热系数随温度升高均先减小后增大,并且煤导热系数随单轴应力增大呈三次函数变化。  相似文献   
29.
在化学反应设计中反应动力学是较重要的因素。为得到更合理的污泥热解动力学参数计算方法,利用热重分析仪,在氮气气氛下对罐底含油污泥的热解特性进行研究。根据热重实验数据,分别采用Coats-Redfern法、Kissinger法、FWO法和Popescu法计算污泥热解动力学参数,并获取罐底泥热解制油的主要阶段(第2阶段)的反应活化能E、频率因子A并分析各种方法反应机理。通过对比不同计算方法得到动力学参数及拟合曲线与实验曲线的相关性,确定了最佳罐底含油污泥热解动力学参数计算方法。研究表明,Popescu法得到罐底泥的热解过程符合Jander方程,活化能E为101.43 kJ/mol,与FWO法得到的91.20 kJ/mol相近,且预测曲线与实验曲线有较好的相关性(0.9816),说明Popescu法计算罐底泥热解动力学参数更合适。  相似文献   
30.
苯蒸气在有机膨润土上的吸附动力学   总被引:4,自引:0,他引:4  
本文研究了苯蒸气在溴化十六烷基三甲基胺(CTMAB)系列单阳离子有机膨润土上的吸附动力学过程。结果表明,苯蒸气在有机膨润土上的吸附符合一级动力学方程,即:r=KvCo;在12h内,吸附反应均可达到平衡,吸附速率常数(Kv)与温度(T)成正相关,吸附反应的活化能在9.50-17.92kJ.mol^-1之间。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号