首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   17篇
  国内免费   127篇
综合类   222篇
基础理论   14篇
污染及防治   2篇
评价与监测   1篇
社会与环境   7篇
灾害及防治   10篇
  2024年   1篇
  2023年   8篇
  2022年   15篇
  2021年   37篇
  2020年   29篇
  2019年   38篇
  2018年   39篇
  2017年   23篇
  2016年   24篇
  2015年   20篇
  2014年   22篇
排序方式: 共有256条查询结果,搜索用时 31 毫秒
51.
民用燃料燃烧排放PM2.5和PM10中碳组分排放因子对比   总被引:7,自引:0,他引:7       下载免费PDF全文
孔少飞  白志鹏  陆炳 《中国环境科学》2014,34(11):2749-2756
在实验室中模拟民用燃料在家庭炉灶中的燃烧,应用稀释通道系统采集颗粒物,获得玉米秸秆、薪柴、蜂窝煤和块煤四种常用民用燃料燃烧排放PM10,PM2.5及载带碳组分的排放因子.结果表明,民用燃料燃烧排放的颗粒物以细颗粒为主, PM2.5占PM10的70%~90%.颗粒物排放因子最大的为块煤,其PM2.5和PM10的排放因子分别为9.837和11.929g/kg,分别是蜂窝煤的12.6和13.7倍;玉米秸秆和薪柴PM2.5和PM10的排放因子稍低于块煤,为7.359~10.444g/kg.4种燃料燃烧OC排放因子块煤最高,其在PM2.5和PM10中分别为5.29和5.19g/kg.薪柴燃烧EC的排放因子最高,其在PM2.5和PM10 中的排放因子分别为1.065和1.126g/kg.块煤两种粒径上EC的排放因子略低于薪柴.蜂窝煤EC的排放因子最低,比薪柴低300倍左右,玉米秸秆EC的排放因子也要比薪柴低10倍左右.碳组分是块煤,秸秆,薪柴排放颗粒物的主要成分,其含量在40%~60%之间,该值比蜂窝煤高3倍.四种燃料对应的OC/EC比值差异很大,薪柴和块煤燃烧排放颗粒该值为3~6,秸秆和蜂窝煤燃烧排放颗粒其值高达30~50.  相似文献   
52.
利用探空资料、NECP再分析资料、AERONET气溶胶反演资料等分析了北京地区一次典型灰霾天气过程的成因及气溶胶光学特性参数变化情况.结果表明:此次灰霾期间,稳定的环流形势、湿润的环境及逆温结构的存在是灰霾得以持续和发展的重要原因.灰霾期间AOD、PM2.5浓度逐渐增大,能见度逐渐降低,这可能与局地气溶胶的累积和相对湿度的增大有关,使气溶胶粒子的消光性增强.气溶胶的体积谱表现为双峰型结构,细粒子体积浓度峰值远大于粗粒子浓度峰值,且细粒子浓度峰值逐日增大,Angstrom波长指数在1.2~1.4之间,两参数均可表明此次灰霾过程的污染粒子以气溶胶细粒子为主;灰霾期间SSA逐日增大,表明气溶胶粒子的散射性逐渐增强,SSA随波长的变化主要呈现两种变化趋势,这与当日主控粒子的尺度有关.因气溶胶的作用,使到达地面的辐射通量减小.这些光学特性参量的变化为了解北京地区灰霾期间气溶胶特性及其气候效应提供了参考.  相似文献   
53.
近53年山东省霾季节性特征的年代际变异   总被引:1,自引:0,他引:1  
为了进一步认识山东省霾日长期变化特征,从而为政府决策和空气质量预报提供科学依据,基于山东省80 个气象站53 年(1961-2013)的观测资料分析,利用多项式及线性回归拟合、定义表示随季节和年际变化程度的变量如季节变化率、年际变化率等多种统计方法分析了近53 年来山东省霾日季节性的年际、年代际长期变化及空间分布规律,结果表明,山东上个世纪明显的冬季霾高发的典型季节性特征演变为本世纪模糊的季节差异,即霾多发时段随年际增长逐渐由冬季蔓延至秋季,夏季和春季.全省平均霾日的季节变率从60 年代的84.0%,70-80 年代的72.4%~73.6%,到90 年代跌至56.4%,而在本世纪的13 年低达42.3%,体现了山东霾日变化季节性的年代际特征,即近53 年季节差异在不断减小,霾趋于常年化发生的大气污染事件.霾日季节性的空间分布及年际变化特征还表明:近53 年山东霾日呈持续上升趋势,1990 年之前呈显著的增长趋势,1990 年之后上升缓慢,但维持霾高发的水平.霾日高发区域主要集中在济南地区,济宁-泰安-莱芜一带,枣庄-临沂一带,青岛地区和聊城西部地区,其中,高中心依次为济南的80.9 d·a^-1,临沂的78.2 d·a^-1 和青岛的69.0 d·a^-1.山东中东部的霾日年增长率整体高于西部地区,鲁中、鲁南及半岛南部地区是霾日年际增长高值区.山东省霾日年际变化趋势以夏季增长率最高,大部分地区的年际增长率都在4.5%·a^-1 以上,其次是秋季、春季霾日年际变化趋势,冬季霾日年际变化趋势普遍增长率最低,且大部分地区的变化率值为1.5%·a^-1 以上,近53 年来山东大部分地区出现了霾日模糊季节性变异.  相似文献   
54.
为研究不同天气条件下大气污染物(PM_(2.5)、PM_(1.0)、SO_2、NO_2、O_3和CO)和气溶胶化学组分的污染特征,分别使用SHARP-5030监测仪、热电EMS系统、气溶胶化学成分在线监测仪(ACSM)和宽范围颗粒粒径谱仪(WPS)对嘉兴市2015年5月1~31日PM、污染气体、PM_(1.0)中化学组分和10 nm~10μm气溶胶数浓度进行了观测分析.结果表明,观测期间嘉兴市PM_(2.5)、PM_(1.0)、SO_2、NO_2、O_3和CO的平均浓度分别为52.8和37.2μg·m~(-3)、10.3μg·m~(-3)、38.1μg·m~(-3)、92.1μg·m~(-3)和1.2 mg·m~(-3).PM_(1.0)中OA、SO_2-4、NO-3、NH_4~+和Cl-的平均浓度为2.18、1.24、0.87、0.63和0.08μg·m~(-3).数浓度主要集中在爱根核模态(20~100 nm),浓度为12 411.2 cm~(-3),其次是核模态(10~20 nm),浓度为4 946.6 cm~(-3).不同天气过程中PM和污染气体的浓度分布和日变化特征不同.不同天气条件下PM_(1.0)中化学组分分布不同.雨天和晴天PM_(1.0)中化学组分浓度从大到小顺序均为OASO_2-4NO-3NH_4~+Cl-,新粒子天PM_(1.0)中化学组分浓度的顺序为OANO-3SO_2-4NH_4~+Cl-.新粒子天OA和NO-3分别是晴天的1.61和1.42倍,说明OA和NO-3是影响新粒子生成事件的主要化学成分.不同天气条件下不同模态气溶胶的日变化特征不同.  相似文献   
55.
为了深入了解南京北郊冬季气溶胶散射特征以及PM_(2.5)化学组分对其贡献情况,2015年1月使用积分浊度仪获取散射系数数据,同时利用KC-120H采样器对PM_(2.5)样本进行采集,并通过离子色谱仪对所采集的PM_(2.5)样本的化学组分进行分析。结果表明,观测期间PM_(2.5)质量浓度与气溶胶散射系数的日均值分别为(126.46±68.55)μg·m~(-3)和(423.36±265.34)Mm~(-1),两者变化趋势基本类似且均随污染程度的升高而上升,散射系数与PM_(2.5)质量浓度的相关性较好,相关系数r高达0.93。通过对散射系数小时平均值进行统计后发现,散射系数出现频率最高的两个区间分别为100~200 Mm~(-1)和400~500 Mm~(-1)。观测地区冬季日均散射系数变化呈"三峰型"分布,峰值分别出现在05:00、14:00以及18:00—20:00。日均散射系数在清洁天中呈现"双峰型"分布,在两种污染天中则呈"三峰型"分布。通过IMPROVE方程重建各个化学组分与散射系数之间的关系发现,重建后的散射系数与实测散射系数之间相关性较高(r=0.896),说明IMPROVE方程能够较好地反映PM_(2.5)中主要化学组分对散射系数的贡献情况。根据贡献率计算可知,NH_4NO_3、(NH_4)_2SO_4和OC是南京北郊冬季不同大气污染程度中气溶胶散射系数增大最为主要的贡献源。利用HYSPLIT-4在线模式分析了1月24日、28日和30日3个不同污染天的48 h气团后向轨迹后发现,局地源排放为南京北郊颗粒物质量浓度上升的主要原因。  相似文献   
56.
南京北郊大气VOCs变化特征及来源解析   总被引:10,自引:8,他引:2  
安俊琳  朱彬  王红磊  杨辉 《环境科学》2014,35(12):4454-4464
利用2011-03-01~2012-02-29南京北郊大气VOCs观测资料,对大气VOCs浓度变化特征和特征物比值差异展开研究,并应用PCA/APCS受体模型对不同季节VOCs来源进行了解析.结果表明,南京大气总VOCs体积混合比为43.52×10-9,其中烷烃占45.1%、烯烃占25.3%、炔烃占7.3%和芳香烃占22.3%.总VOCs体积混合比呈现夏季高,冬季低的季节变化.VOCs组分中烷烃在冬季最高,烯烃夏季最高,芳香烃春季最高,炔烃冬季最高.特征物比值(VOCs/乙炔)和T/B比值反映出观测点受周边工业区影响较大.VOCs源解析表明,主要来源来自工厂生产、机动车排放、燃料燃烧、生产活动挥发、溶剂使用和自然源.虽然有季节变化,但与工业生产活动相关的来源占大气VOCs 45%~63%,其次为机动车来源占34%~50%.  相似文献   
57.
应用TUV辐射传输模式进行了一系列的敏感性试验,以期确定影响对流层O3和NO2光解速率的关键性因子.结果表明,气溶胶的光学性质对光解速率的影响存在明显差异.在气溶胶光学厚度(AOD)一定的情况下,散射性越强,近地面光解速率越大;当AOD从0.5增加至2.5,J[O1D]和J[NO2]极大值分别下降30.3%和13.1%.光解速率对较小的云光学厚度的变化比较敏感.云对J[NO2]的影响存在明显的时间差异,在早晨和傍晚,J[NO2]的衰减可以达到12%,而午时,J[NO2]的衰减不足4%;在垂直方向上,云层的存在能够减小通过云层的光化辐射通量,有效降低云下光解速率,而云滴的后向散射特性能增大云上的光解速率.臭氧能够吸收300nm左右的紫外辐射,因而臭氧柱浓度变化对J[O1D]有显著的影响,臭氧柱浓度从200DU增加至400DU,J[O1D]极大值下降了53.1%,J[NO2]极大值仅降低了1.0%.同时发现,气溶胶和云相对位置的改变对光解速率的垂直分布有较大的影响,气溶胶在云上时,高层的光解速率明显增大,且气溶胶的散射性越强,光解速率的增幅越大;当吸收性气溶胶位于云上时,使得高层光化辐射通量大量衰减,此时云层对于光解速率的影响比较微弱.  相似文献   
58.
于2016年12月13日~2017年1月5日采集了徐州、东山、南京、寿县4个站点的PM2.5样品,分析了水溶性离子的组成及其来源,并结合天气形势分析了长江三角洲地区大范围霾天气的形成消散及水溶性离子的时间变化特征.结果表明:观测期间徐州站PM2.5平均质量浓度171.5μg/m3,远高于其他3个站点,4个站点最主要的离子成分均为NO3-,SO42-,NH4+,Cl-和Ca2+.在同一天气系统影响下,长江三角洲大范围区域污染物浓度变化基本一致,在没有大的区域输送的静稳天气下,各站点离子浓度容易受局地源影响,徐州站受燃煤影响,南京站受化学工业源影响为主,2个站点以SO42-为主,东山站三面环湖,Cl-在静稳天气有大幅上升,达到了6.12μg/m3,寿县站受当地农业活动氨排放影响,NH4+有大幅上升,达到了25.09μg/m3.4个站点PM2.5和水溶性离子质量浓度随时间的变化趋势一致.弱高压的均压场形势下,并伴随有逆温层出现时有利于污染物的累积.主成分分析发现4个站点二次转化对PM2.5有着最大的贡献率,4个站点贡献率分别为39.83%、42.27%、50.56%和38.40%.  相似文献   
59.
泰山顶(1534 m)夏季气溶胶粒径分布特征   总被引:3,自引:1,他引:2  
使用宽范围粒径谱仪对泰山顶2017年6月1~25日10 nm~10μm气溶胶数浓度粒径分布进行观测,结合PM(PM_(2. 5)和PM10)以及气象要素数据,分析了泰山顶气溶胶粒径分布特征及其主要影响因素.结果表明,观测期间泰山PM_(2. 5)和PM10的平均浓度分别为20. 7μg·m~(-3)和82. 4μg·m~(-3),PM_(2. 5)/PM10仅为25. 1%.数浓度、表面积浓度和体积分数平均为8 672. 8cm~(-3)、408. 3μm2·cm~(-3)和24. 2μm3·cm~(-3).数浓度谱分布为单峰型分布,表面积浓度和体积分数谱分布均为三峰型分布.数浓度和表面积浓度的主导粒径分别为10~20 nm和100~500 nm,体积分数的主导粒径为100~500 nm和2. 5~10μm.风向对PM和数浓度的影响要比风速的影响大.随着RH的增加,气溶胶数浓度谱由双峰型分布转变为单峰型分布,表面积浓度谱由单峰型分布转变为三峰型分布.  相似文献   
60.
南京江北新区大气单颗粒来源解析及混合状态   总被引:4,自引:4,他引:0  
于兴娜  时政  马佳  李梅  龚克坚 《环境科学》2019,40(4):1521-1528
利用单颗粒气溶胶飞行时间质谱(SPAMS)于2015年12月1~31日对南京江北新区大气单颗粒进行了测量,共采集到同时含有正负离子谱图的颗粒747.8万个.结果表明,监测期间南京江北新区总体空气质量较差,污染天气占比为49.2%,SPAMS所捕获的颗粒数与PM2.5质量浓度的相关性达到0.83,因此颗粒物数浓度在一定程度上能够用来反映大气污染状况,监测点主要污染源包括燃煤源以及机动车尾气源,工业工艺源污染占比居第3位,3种源的总贡献率达到63.5%.从整体上看,PM2.5质量浓度的升高大多伴随着燃煤及机动车尾气占比的升高,EC、混合碳(ECOC)与OC在生物质燃烧、扬尘、汽车尾气排放、燃煤燃烧以及工业源中均与NO2-、NO3-以及SO4-有较高的混合程度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号