首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
环保管理   12篇
综合类   2篇
污染及防治   2篇
  2023年   1篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  1999年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有16条查询结果,搜索用时 31 毫秒
1.
This work presents a framework for viewing agricultural adaptation, emphasizing the multiple spatial and temporal scales on which individuals and institutions process information on changes in their environment. The framework is offered as a means to gain perspective on the role of climate variability and change in agricultural adaptation, and developed for a case study of Australian agriculture. To study adaptation issues at the scale of individual farms we developed a simple modelling framework. The model highlights the decision making element of adaptation in light of uncertainty, and underscores the importance of decision information related to climate variability. Model results show that the assumption of perfect information for farmers systematically overpredicts adaptive performance. The results also suggest that farmers who make tactical planting decisions on the basis of historical climate information are outperformed by those who use even moderately successful seasonal forecast information. Analysis at continental scales highlights the prominent role of the decline in economic operating conditions on Australian agriculture. Examples from segments of the agricultural industry in Australia are given to illustrate the importance of appropriate scale attribution in adapting to environmental changes. In particular, adaptations oriented toward short time scale changes in the farming environment (droughts, market fluctuations) can be limited in their efficacy by constraints imposed by broad changes in the soil/water base and economic environment occuring over longer time scales. The case study also makes the point that adaptation must be defined in reference to some goal, which is ultimately a social and political exercise. Overall, this study highlights the importance of allowing more complexity (limited information, risk aversion, cross-scale interactions, mis-attribution of cause and effect, background context, identification of goals) in representing adaptation processes in climate change studies.  相似文献   
2.
There is critical need for a practical indicator to assess the potential for phosphorus (P) movement from a given site to surface waters, either via surface runoff or subsurface drainage. The degree of phosphorus saturation (DPS), which relates a measure of P already adsorbed by a soil to its P adsorption capacity, could be a good indicator of that soil's P release capability. Our primary objective was to find a suitable analytical protocol for determining DPS and to examine the possibility of defining a threshold DPS value for Florida's sandy soils. Four farmer-owned dairy sprayfields were selected within the Suwannee River basin and soil profiles were randomly obtained from each site, as well as from adjacent unimpacted sites. The soil samples were divided either by horizon or depth, and DPS was determined for each soil sample using ammonium-oxalate (DPS(Ox)), Mehlich-1 (DPS(M1)), and Mehlich-3 (DPS(M3)) extracts. All methods of DPS calculations were linearly related to one another (r2 > 0.94). Relationships between water-soluble P and DPS indicate that the respective change points are: DPS(Ox) = 20%, DPS(M1) = 20%, and DPS(M3) = 16%. These relationships include samples from Ap, E, and Bt horizons, and various combinations thereof, suggesting that DPS values can be used as predictors of P loss from a soil irrespective of the depth of the soil within a profile. Taking into consideration the change points, confidence intervals, agronomic soil test values, and DPS values from other studies, we suggest replacing Mehlich-1 P values in the Florida P Index with the three DPS categories (DPS(M1) = <30, 30-60, and >60%) to assign different P loss ratings in the P Index.  相似文献   
3.
In northern Florida, year-round forage systems are used in dairy effluent sprayfields to reduce nitrate leaching. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentration below the rooting zone for two perennial, sod-based, triple-cropping systems over four 12-mo cycles (1996-2000). The soil is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzip-samment). Effluent N rates were 500, 690, and 910 kg ha(-1) per cycle. Differences in N removal between a corn (Zea mays L.)-bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (CBR) and corn-perennial peanut (Arachis glabrata Benth.)-rye system (CPR) were primarily related to the performance of the perennial forages. Nitrogen removal of corn (125-170 kg ha(-1)) and rye (62-90 kg ha(-1)) was relatively stable between systems and among cycles. The greatest N removal was measured for CBR in the first cycle (408 kg ha(-1)), with the bermudagrass removing an average of 191 kg N ha(-1). In later cycles, N removal for bermudagrass declined because dry matter (DM) yield declined. Yield and N removal of perennial peanut increased over the four cycles. Nitrate N concentrations below the rooting zone were lower for CBR than CPR in the first two cycles, but differences were inconsistent in the latter two. The CBR system maintained low NO3(-)-N leaching in the first cycle when the bermudagrass was the most productive; however, it was not a sustainable system for long-term prevention of NO3(-)-N leaching due to declining bermudagrass yield in subsequent cycles. For CPR, effluent N rates > or = 500 kg ha(-1) yr(-1) have the potential to negatively affect ground water quality.  相似文献   
4.
Phosphorus saturation in spodosols impacted by manure   总被引:1,自引:0,他引:1  
Significant amounts of phosphorus (P) accumulate in soils receiving animal manures that could eventually result in unacceptable concentrations of dissolved P loss through surface runoff or subsurface leaching. The degree of phosphorus saturation (DPS) relates a soil's extractable P to its P sorbing capacity, and is reportedly a predictor of the P likely to be mobilized from a system. A DPS value (DPS-1) was derived that expressed the percentage of Mehlich 1-extractable P to the sorbing capacity of a Spodosol (expressed as the sum of oxalate-extractable Fe and Al). Values of DPS-1 were determined in various horizons of soil in current and abandoned dairy systems in South Florida's Lake Okeechobee watershed to assess P release potential. Land use within the dairies was classified as highly impacted by cattle (intensive and holding), and minimally impacted by cattle (pasture, forage, or native) areas. The A and E horizon of soils in heavily manure-impacted intensive and holding areas for both active and abandoned dairies generally had higher DPS-1 values than the pasture, forage, and native area soils, which were minimally impacted by manure. Degree of P saturation was also calculated as a percentage of Mehlich 1-extractable P to the sum of Mehlich 1-extractable Fe and Al (DPS-2). Both DPS-1 and DPS-2 were shown to be significantly (P = 0.0001) related to water-extractable P for all soil horizons, suggesting that either index can be used as an indicator for P loss potential from a soil.  相似文献   
5.

Background, aim and scope  

Water quality impairment by heavy metal contamination is on the rise worldwide. Phytoremediation technology has been increasingly applied to remediate wastewater and stormwater polluted by heavy metals.  相似文献   
6.
Cleft lip and/or palate (CL/CP) is the most common congenital craniofacial anomaly and parents often ask, “how did this happen?” Patients and families may benefit from access to a multidisciplinary team (MDT) from prenatal diagnosis into early adulthood. Multiple factors can contribute to the development of a cleft. We discuss the epidemiology and risk factors that increase the likelihood of having a newborn with a cleft. The purpose of this article is to review the prenatal investigations involved in the diagnosis and workup of these patients in addition to postpartum treatment, prognostic factors, and counseling families regarding future recurrence risk.  相似文献   
7.
Influence of flooding on phosphorus mobility in manure-impacted soil   总被引:1,自引:0,他引:1  
Agricultural lands are often used for constructing stormwater treatment areas (STAs) to abate nutrient loading to adjacent aquatic systems. Flooding agricultural lands to create STAs could stimulate a significant release of phosphorus (P) from soil to the water column. To assess the suitability of agricultural lands, specifically those impacted by animal operations, for the construction of STAs, soils from different components of the New Palm-Newcomer dairies (Nubbin Slough Basin, Okeechobee, Florida, USA) were collected by horizon and their P retention and release capacities estimated. In general, P released from A-horizon soil under flooded (anaerobic) conditions was greater than under drained (aerobic) conditions due to redox effect on iron (Fe) and consequent P releases. However, the P released from Bh-horizon soil was greater under aerobic conditions than under anaerobic conditions, possibly due to excessive aluminum (Al) content in the horizon. Double acid-extractable calcium (Ca), magnesium (Mg), Al, and P explained 87% of the variability in P release under aerobic conditions, and 80% of that under anaerobic conditions. The P release maxima indicated a high solubility of P in A-horizon soil from both active and abandoned dairies (13 and 8% of the total P, respectively), suggesting that these soils could function as potential sources of P to the overlying water column when used in STA construction. Preestablishment of vegetative communities or chemical amendment, however, could ameliorate high P flux from soil to the water column.  相似文献   
8.
Florida dairies need year-round forage systems that prevent loss of N to ground water from waste effluent sprayfields. Our purpose was to quantify forage N removal and monitor nitrate N (NO3(-)-N) concentrations in soil water below the rooting zone for two forage systems during four 12-mo cycles (1996-2000). Soil in the sprayfield is an excessively drained Kershaw sand (thermic, uncoated Typic Quartzipsamment). Over four cycles, average loading rates of effluent N were 500, 690, and 910 kg ha(-1) per cycle. Nitrogen removed by the bermudagrass (Cynodon spp.)-rye (Secale cereale L.) system (BR) during the first three cycles was 465 kg ha(-1) per cycle for the low loading rate, 528 kg ha(-1) for the medium rate, and 585 kg ha(-1) for the high. For the corn (Zea mays L.)-forage sorghum [Sorghum bicolor (L.) Moench]-rye system (CSR), N removals were 320 kg ha(-1) per cycle for the low rate, 327 kg ha(-1) for the medium, and 378 kg ha(-1) for the high. The higher N removals for BR were attributed to higher N concentration in bermudagrass (18.1-24.2 g kg(-1)) than in corn and forage sorghum (10.3-14.7 g kg(-1)). Dry matter yield declined in the fourth cycle for bermudagrass but N removal continued to be higher for BR than CSR. The BR system was much more effective at preventing NO3(-)-N leaching. For CSR, NO3(-)-N levels in soil water (1.5 m below surface) increased steeply during the period between the harvest of one forage and canopy dosure of the next. Overall, the BR system was better than CSR at removing N from the soil and maintaining low NO3(-)-N concentrations below the rooting zone.  相似文献   
9.
There is a critical need to accurately measure the concentrations of natural steroidal estrogens in flushed dairy manure wastewater (FDMW) to assess any potential risk of waterway contamination resulting from land application. Estrogens are a concern because low concentrations (10-100 ng L-1) in water can adversely affect aquatic vertebrate species such as fish, turtles, and frogs by disrupting the normal function of their endocrine systems. The objective of this study was to develop a sample preparation method that permits the quantification of four natural steroidal estrogens (17alpha-estradiol, 17beta-estradiol, estrone, and estriol) in FDMW by gas chromatography-mass spectrometry (GC-MS). Solid-phase extraction with graphitized carbon black was used for the bulk extraction of estrogens from FDMW and additional sample purification was accomplished with C-18. The sample preparation method allowed estrogens to be detected accurately by GC-MS in FDMW. Spiked recovery experiments indicated that the method is satisfactory for measuring the estrogens of interest in FDMW with average recovery of >90%. As expected in FDMW, characterization of the estrogen profile revealed a large abundance of 17alpha-estradiol relative to 17beta-estradiol and estrone. Estriol was not detected in FDMW. The methodology developed in this research helps provide an analytical foundation for the quantification of steroidal estrogens in FDMW by GC-MS.  相似文献   
10.
Potential use of reservoirs and flooded fields stocked with aquatic plants for reduction of the nutrient levels of organic soil drainage water was evaluated. The treatment systems include 1) a large single reservoir (R1) stocked with waterhyacinth (Eichhornia crassipes), elodea (Egeria densa), and cattails (Typha sp.) in series; 2) three small reservoirs in series with waterhyacinth (R2), elodea (R3), and cattails (R4), grown in independent reservoirs; 3) a control reservoir (R5) with no cultivated plants; 4) a large single flooded field planted to cattails; 5) three small flooded fields in a series planted to cattails; and 6) a flooded field with no cultivated plants. Drainage water was pumped daily (6 hours a day, and 6 days a week) into these systems for a period of 27 months at predetermined constant flow rates. Water samples were collected at the inlet and outlet of each treatment system and analyzed for N and P forms.The series of reservoirs stocked with aquatic plants functioned effectively in the removal of N and P from agricultural drainage water, compared to a single large reservoir. Allowing the water to flow through the reservoir stocked with waterhyacinth plants with a residence time of 3.6 days was adequate to remove about 50% of the incoming inorganic N. Allowing the water to flow through a series of two small reservoirs, R2 and R3, with a residence time of 7.3 days was necessary to remove about 60% of the incoming ortho-P. Flooded fields were effective in the removal of inorganic N, but showed poor efficiency in the removal of ortho-P.Florida Agricultural Experiment Stations Journal Series No. 2320.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号