首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
废物处理   1篇
综合类   1篇
污染及防治   6篇
评价与监测   1篇
  2022年   1篇
  2021年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2007年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
Journal of Material Cycles and Waste Management - Recirculation of the leachate using bioreactor technology for in-situ treatment of leachate is an efficient method for reducing the contaminants...  相似文献   
2.
The Science of Nature - Leaf-cutting ants are highly successful herbivores in the Neotropics. They forage large amounts of fresh plant material to nourish a symbiotic fungus that sustains the...  相似文献   
3.
An enrichment culture was used to study atrazine degradation in mineral salt medium (MSM) (T1), MSM+soil extract (1:1, v/v) (T2) and soil extract (T3). Results suggested that enrichment culture required soil extract to degrade atrazine, as after second sequential transfer only partial atrazine degradation was observed in T1 treatment while atrazine was completely degraded in T2 and T3 treatments even after fourth transfer. Culture independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) technique confirmed selective enrichment of genus Bacillus along with Pseudomonas and Burkholderia. Degradation of atrazine/metabolites in the industrial wastewater was studied at different initial concentrations of the contaminants [wastewater-water (v/v) ratio: T1, 1:9; T2, 2:8; T3, 3:7; T4, 5:5 and T5, undiluted effluent]. The initial concentrations of atrazine, cyanuric acid and biuret ranged between 5.32 and 53.92 µg mL?1, 265.6 and 1805.2 µg mL?1 and 1.85 and 16.12 µg mL?1, respectively. The enrichment culture was able to completely degrade atrazine, cyanuric acid and biuret up to T4 treatment, while no appreciable degradation of contaminants was observed in the undiluted effluent (T5). Inability of enrichment culture to degrade atrazine/metabolites might be due to high concentrations of cyanuric acid. Therefore, a separate study on cyanuric acid degradation suggested: (i) no appreciable cyanuric acid degradation with accumulation of an unidentified metabolite in the medium where cyanuric acid was supplemented as the sole source of carbon and nitrogen; (ii) partial cyanuric acid degradation with accumulation of unidentified metabolite in the medium containing additional nitrogen source; and (iii) complete cyanuric acid degradation in the medium supplemented with an additional carbon source. This unidentified metabolite observed during cyanuric acid degradation and also detected in the enrichment culture inoculated wastewater samples, however, was degraded up to T4 treatments and was persistent in the T5 treatment. Probably, accumulation of this metabolite inhibited atrazine/cyanuric acid degradation by the enrichment culture in undiluted wastewater.  相似文献   
4.
Polyaromatic hydrocarbons (PAHs) utilizing bacteria were isolated from soils of seven sites of Mathura refinery, India. Twenty-six bacterial strains with different morphotypes were isolated. These strains were acclimatized to utilize a mixture of four polycyclic aromatic hydrocarbons, i.e., anthracene, fluorene, phenanthrene, and pyrene, each at 50 mg/L concentration as sole carbon source. Out of total isolates, 15 potent isolates were subjected to 16S rDNA sequencing and identified as a member of diverse genera, i.e., Bacillus, Acinetobacter, Stenotrophomonas, Alcaligenes, Lysinibacillus, Brevibacterium, Serratia, and Streptomyces. Consortium of four promising isolates (Acinetobacter, Brevibacterium, Serratia, and Streptomyces) were also investigated for bioremediation of PAH mixture. This consortium was proved to be efficient PAH degrader resulting in 40–70 % degradation of PAH within 7 days. Results of this study indicated that these genera may play an active role in bioremediation of PAHs.  相似文献   
5.
Environmental Science and Pollution Research - The direct discharge of azo dyes and/or their metabolites into the environment may exert toxic, mutagenic, and carcinogenic effects on exposed fauna...  相似文献   
6.
Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with KF values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [KF.(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.  相似文献   
7.
Survival of Mesorhizobium ciceri (SP4) and Azotobacter chroococcum (CBD-15 and M4) was tested on chickpea (Cicer arietinum) seeds treated with fungicides bavistin [methyl N-(1H-benzimidazol-2yl) carbamate] and thiram (tetramethyl-thiuram disulfide), whereas survival of phosphate solubilizing bacteria (PSB), Pseudomonas striata (27) and Bacillus polymyxa (H5) was examined on two cultivars (Arkel and BV) of pea (Pisum sativum) seeds treated with thiram. Viability of Azotobacter chroococcum (W5) was also examined on wheat (Triticum aestivum) seeds treated with bavistin, captan (cis-N-trichloromethyl thio-4 cyclohexane-1, 2-dicarboximide) and thiram under laboratory conditions using standard dilution and the plate count technique. All the tested strains of diazotrophs and PSB showed decline in their viable population on prolonged contact with fungicides. However, PSB showed variation in their viable population even with the cultivar.

BV cultivar of pea seeds showed better recovery of viable P. striata (10.75 to 10.61 log no. of viable cells with in 0-24 hrs) in the presence of thiram, whereas the Arkel cultivar of pea resulted in better recovery of viable B. polymyxa. Azotobacter chroococcum (W5), a potential strain for wheat, showed better survival in the presence of bavistin, compared to thiram and captan. Higher viable population of Mesorhizobium ciceri (SP4) and Azotobacter chroococcum (M4) was recovered from chickpea seeds treated with bavistin compared to thiram. However, thiram-treated seeds resulted in a greater number of extractable Azotobacter chroococcum (CBD-15). Under field conditions, adverse effect of thiram was reflected on the performance of Mesorhizobium ciceri (SP4) and A. chroococcum (M4) strains, resulting in reduced root and shoot biomass and grain yield, compared to bavistin treated and culture inoculated treatment. CBD-15 showed better performance in the presence of thiram compared to bavistin.  相似文献   
8.
An atrazine degrading enrichment culture, a consortium of bacteria of genus Bacillus along with Pseudomonas and Burkholderia, was immobilized in sodium alginate and was used to study atrazine degradation in mineral salts medium (MSM), soil and wastewater effluent. Sodium alginate immobilized consortium, when stored at room temperature (24 ± 5°C), was effective in degrading atrazine in MSM up to 90 days of storage. The survival of bacteria in alginate beads, based on colony formation unit (CFU) counts, suggested survival up to 90 days and population counts decreased to 1/5th on 120 days. Comparison of atrazine degrading ability of the freely suspended enrichment culture and immobilized culture suggested that the immobilized culture took longer time for complete degradation of atrazine as a lag phase of 2 days was observed in the MSM inoculated with alginate immobilized culture. The free cells resulted in complete degradation of atrazine within 6 days, while immobilized cells took 10 days for 100% atrazine degradation. Further, immobilized cultures were able to degrade atrazine in soil and wastewater effluent. Alginate beads were stable and effective in degrading atrazine till 3rd transfer and disintegrated thereafter. The study suggested that immobilized enrichment culture, due to its better storage and application, can be used to degrade atrazine in soil water system.  相似文献   
9.
Survival of Mesorhizobium ciceri (SP(4)) and Azotobacter chroococcum (CBD-15 and M(4)) was tested on chickpea (Cicer arietinum) seeds treated with fungicides bavistin [methyl N-(1H-benzimidazol-2yl) carbamate] and thiram (tetramethyl-thiuram disulfide), whereas survival of phosphate solubilizing bacteria (PSB), Pseudomonas striata (27) and Bacillus polymyxa (H(5)) was examined on two cultivars (Arkel and BV) of pea (Pisum sativum) seeds treated with thiram. Viability of Azotobacter chroococcum (W(5)) was also examined on wheat (Triticum aestivum) seeds treated with bavistin, captan (cis-N-trichloromethyl thio-4 cyclohexane-1, 2-dicarboximide) and thiram under laboratory conditions using standard dilution and the plate count technique. All the tested strains of diazotrophs and PSB showed decline in their viable population on prolonged contact with fungicides. However, PSB showed variation in their viable population even with the cultivar. BV cultivar of pea seeds showed better recovery of viable P. striata (10.75 to 10.61 log no. of viable cells with in 0-24 hrs) in the presence of thiram, whereas the Arkel cultivar of pea resulted in better recovery of viable B. polymyxa. Azotobacter chroococcum (W(5)), a potential strain for wheat, showed better survival in the presence of bavistin, compared to thiram and captan. Higher viable population of Mesorhizobium ciceri (SP(4)) and Azotobacter chroococcum (M(4)) was recovered from chickpea seeds treated with bavistin compared to thiram. However, thiram-treated seeds resulted in a greater number of extractable Azotobacter chroococcum (CBD-15). Under field conditions, adverse effect of thiram was reflected on the performance of Mesorhizobium ciceri (SP(4)) and A. chroococcum (M(4)) strains, resulting in reduced root and shoot biomass and grain yield, compared to bavistin treated and culture inoculated treatment. CBD-15 showed better performance in the presence of thiram compared to bavistin.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号