首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   962篇
  免费   43篇
  国内免费   12篇
安全科学   38篇
废物处理   45篇
环保管理   262篇
综合类   66篇
基础理论   244篇
环境理论   1篇
污染及防治   265篇
评价与监测   60篇
社会与环境   29篇
灾害及防治   7篇
  2023年   6篇
  2022年   8篇
  2021年   9篇
  2020年   16篇
  2019年   4篇
  2018年   19篇
  2017年   28篇
  2016年   30篇
  2015年   25篇
  2014年   31篇
  2013年   94篇
  2012年   39篇
  2011年   50篇
  2010年   39篇
  2009年   43篇
  2008年   55篇
  2007年   55篇
  2006年   53篇
  2005年   38篇
  2004年   34篇
  2003年   36篇
  2002年   36篇
  2001年   17篇
  2000年   27篇
  1999年   16篇
  1998年   18篇
  1997年   16篇
  1996年   22篇
  1995年   19篇
  1994年   16篇
  1993年   10篇
  1992年   12篇
  1991年   4篇
  1990年   5篇
  1989年   13篇
  1988年   6篇
  1987年   13篇
  1986年   5篇
  1985年   6篇
  1984年   6篇
  1983年   6篇
  1982年   9篇
  1981年   4篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
1.
Controlling invasive species is critical for conservation but can have unintended consequences for native species and divert resources away from other efforts. This dilemma occurs on a grand scale in the North American Great Lakes, where dams and culverts block tributary access to habitat of desirable fish species and are a lynchpin of long‐standing efforts to limit ecological damage inflicted by the invasive, parasitic sea lamprey (Petromyzon marinus). Habitat restoration and sea‐lamprey control create conflicting goals for managing aging infrastructure. We used optimization to minimize opportunity costs of habitat gains for 37 desirable migratory fishes that arose from restricting sea lamprey access (0–25% increase) when selecting barriers for removal under a limited budget (US$1–105 million). Imposing limits on sea lamprey habitat reduced gains in tributary access for desirable species by 15–50% relative to an unconstrained scenario. Additional investment to offset the effect of limiting sea‐lamprey access resulted in high opportunity costs for 30 of 37 species (e.g., an additional US$20–80 million for lake sturgeon [Acipenser fulvescens]) and often required ≥5% increase in sea‐lamprey access to identify barrier‐removal solutions adhering to the budget and limiting access. Narrowly distributed species exhibited the highest opportunity costs but benefited more at less cost when small increases in sea‐lamprey access were allowed. Our results illustrate the value of optimization in limiting opportunity costs when balancing invasion control against restoration benefits for diverse desirable species. Such trade‐off analyses are essential to the restoration of connectivity within fragmented rivers without unleashing invaders.  相似文献   
2.
3.
4.
5.
6.
The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21–26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one‐quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species.  相似文献   
7.

Chemical treatments are widely employed to improve the fiber-matrix adhesion in composites based on eco-friendly fibers such as flax. To better understand the influence of these treatments on processing behavior, this study characterized the surface chemistry and morphology of woven flax fabrics treated by acetone, alkaline, silane and diluted epoxy. Flax/epoxy composites were then manufactured by resin infusion and the flow front and preform thickness evolution was monitored. The alkaline treatment was shown to result in a 50 % increase in equivalent permeability due to an increase in porosity which led to a decrease in flexural properties. The processing results were found to be in good agreement with predictions of a 1-dimensional model. This study suggests that infusion times are not considerably affected by the observed changes in surface energy. However, other implications of the treatments such as an increase in fibrillation can alter the infusion times significantly.

  相似文献   
8.
Objective: This study evaluated the effectiveness of a series of 1-year multifaceted school-based programs aimed at increasing booster seat use among urban children 4–7 years of age in economically disadvantaged areas.

Methods: During 4 consecutive school years, 2011–2015, the Give Kids a Boost (GKB) program was implemented in a total of 8 schools with similar demographics in Dallas County. Observational surveys were conducted at project schools before project implementation (P0), 1–4 weeks after the completion of project implementation (P1), and 4–5 months later (P2). Changes in booster seat use for the 3 time periods were compared for the 8 project and 14 comparison schools that received no intervention using a nonrandomized trial process.

The intervention included (1) train-the-trainer sessions with teachers and parents; (2) presentations about booster seat safety; (3) tailored communication to parents; (4) distribution of fact sheets/resources; (5) walk-around education; and (6) booster seat inspections.

The association between the GKB intervention and proper booster seat use was determined initially using univariate analysis. The association was also estimated using a generalized linear mixed model predicting a binomial outcome (booster seat use) for those aged 4 to 7 years, adjusted for child-level variables (age, sex, race/ethnicity) and car-level variables (vehicle type). The model incorporated the effects of clustering by site and by collection date to account for the possibility of repeated sampling.

Results: In the 8 project schools, booster seat use for children 4–7 years of age increased an average of 20.9 percentage points between P0 and P1 (P0 = 4.8%, P1 = 25.7%; odds ratio [OR] = 6.9; 95% confidence interval [CI], 5.5, 8.7; P < .001) and remained at that level in the P2 time period (P2 = 25.7%; P < .001, for P0 vs. P2) in the univariate analysis. The 14 comparison schools had minimal change in booster seat use. The multivariable model showed that children at the project schools were significantly more likely to be properly restrained in a booster seat after the intervention (OR = 2.7; 95% CI, 2.2, 3.3) compared to the P0 time period and compared to the comparison schools.

Conclusion: Despite study limitations, the GKB program was positively associated with an increase in proper booster seat use for children 4–7 years of age in school settings among diverse populations in economically disadvantaged areas. These increases persisted into the following school year in a majority of the project schools. The GKB model may be a replicable strategy to increase booster seat use among school-age children in similar urban settings.  相似文献   

9.
Despite recent calls to limit future increases in the global average temperature to well below 2 °C, little is known about how different climatic thresholds will impact human society. Future warming trends have significant global food security implications, particularly for small island developing states (SIDS) that are recognized as being among the most vulnerable to global climate change. In the case of the Caribbean, any significant change in the region’s climate is likely to have significant adverse effects on the agriculture sector. This paper explores the potential biophysical impacts of a +?1.5 °C warming scenario on several economically important crops grown in the Caribbean island of Jamaica. Also, it explores differences to a >?2.0 °C warming scenario, which is more likely, if the current policy agreements cannot be complied with by the international community. We use the ECOCROP niche model to estimate how predicted changes in future climate could affect the growing conditions of several commonly cultivated crops from both future scenarios. We then discuss some key policy considerations for Jamaica’s agriculture sector, specifically related to the challenges posed to future adaptation pathways amidst growing climate uncertainty and complexity. Our model results show that even an increase less than +?1.5 °C is expected to have an overall negative impact on crop suitability and a general reduction in the range of crops available to Jamaican farmers. This observation is instructive as increases above the +?1.5 °C threshold would likely lead to even more irreversible and potentially catastrophic changes to the sustainability of Jamaica’s agriculture sector. The paper concludes by outlining some key considerations for future action, paying keen attention to the policy relevance of a +?1.5 °C temperature limit. Given little room for optimism with respect to the imminent changes that SIDS will need to confront in the near future, broad-based policy engagement by stakeholders in these geographies is paramount, irrespective of the climate warming scenario.  相似文献   
10.
Over 14 million hectares of erosion prone cropland in the United States has been converted into grasslands through the Conservation Reserve Program (CRP) administered by the United States Department of Agriculture, however, studies of the effects of CRP enrollment on plant communities and subsequent plant succession are largely lacking. In Delta Junction, Alaska plant communities in CRP fields are transitioning from grasslands to shrub dominated plant communities, which are resulting in compliance problems with program regulations that state “fields must be maintained in a condition that permits easy conversion to cropland”. To determine plant succession and how previous land management and soils might influence the transition, we measured plant populations in 20 CRP fields throughout Delta Junction using modified-Whittaker plots. These data were combined with data on current management practices, previous farming history, soils, soil properties, diversity indices, and time since land was cleared and analyzed with nonmetric multidimensional scaling ordination to determine factors that influence plant succession. Time in the CRP was the only factor consistently influencing plant succession. As time in the CRP increased, the planted introduced grasses brome grass (Bromus inermis) and red fescue (Festuca rubra) and the native pteridophyte (Equisetum arvense) decreased, whereas a native grass (Calamigrostis canadensis), five native forb, two native shrub, and three native tree species increased. Plant diversity increased at a rate of more than 2 species per 1000 m2 per year. Regression analyses of plant species and plant groups using time in the CRP as the dependent variable resulted in the identification of outlier CRP fields with significantly more or less than expected covers of vegetation. All fields with these outliers had reasonable explanations for the differences in cover that were unrelated to the overall rate of plant succession. Current management practices will result in incompliant fields and different management practices that result in woody vegetation control is key to maintaining CRP fields in compliance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号