首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
环保管理   1篇
基础理论   1篇
污染及防治   5篇
评价与监测   1篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2016年   2篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
Environmental Science and Pollution Research - The instant endeavor was undertaken to monitor copper (Cu) contents in water, soil, forage, and cow’s blood impacted by heavy automobiles in...  相似文献   
2.

The selection of a best alternative method to minimize air pollution and energy consumption for mine sites is a critical task because it encompasses evaluation of different techniques. The aim of this paper is to select most suitable technology for mining system which helps in reducing air pollution and carbon footprints by implementing the multicriteria decision analysis (MCDA) method. The existing methods or frameworks in the mining sector, which have been used in the past to select the sustainable solution, are lacking aid of MCDA, and there is a need to contribute more in this field with a promising decision system. The MCDA method is applied as a probabilistic integrated approach for a mine site in Canada. The analysis involves processing inputs to the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) method which assists in identifying the alternatives, defining the criteria, and thus outranking of the final choice. Moreover, criteria weighting has been determined using analytical hierarchical process (AHP) method. Three categories: reduction of dust/fugitive emission control strategies, reduction in fuel consumption to minimize carbon footprint, and cyanide destruction methods are selected. The probability distributions of criteria weights and output flows are defined by performing uncertainty analysis using the Monte Carlo simulation (MCS). The sensitivity analysis is conducted using Spearman’s rank correlation method and walking criteria weights. The results indicate that the integrated framework provides a reliable way of selecting air pollution control solutions and help in quantifying the impact of different criteria for the selected alternatives.

  相似文献   
3.
4.
Air quality in the mining sector is a serious environmental concern and associated with many health issues. Air quality management in mining regions has been facing many challenges due to lack of understanding of atmospheric factors and physical removal mechanisms. A modeling approach called the mining air dispersion model (MADM) is developed to predict air pollutants concentration in the mining region while considering the deposition effect. The model takes into account the planet’s boundary conditions and assumes that the eddy diffusivity depends on the downwind distance. The developed MADM is applied to a mining site in Canada. The model provides values for the predicted concentrations of PM10, PM2.5, TSP, NO2, and six heavy metals (As, Pb, Hg, Cd, Zn, Cr) at various receptor locations. The model shows that neutral stability conditions are dominant for the study site. The maximum mixing height is achieved (1280 m) during the evening in summer, and the minimum mixing height (380 m) is attained during the evening in winter. The dust fall (PM coarse) deposition flux is maximum during February and March with a deposition velocity of 4.67 cm/sec. The results are evaluated with the monitoring field values, revealing a good agreement for the target air pollutants with R-squared ranging from 0.72 to 0.96 for PM2.5, from 0.71 to 0.82 for PM10, and from 0.71 to 0.89 for NO2. The analyses illustrate that the presented algorithm in this model can be used to assess air quality for the mining site in a systematic way. Comparisons of MADM and CALPUFF modeling values are made for four different pollutants (PM2.5, PM10, TSP, and NO2) under three different atmospheric stability classes (stable, neutral, and unstable). Further, MADM results are statistically tested against CALPUFF for the air pollutants and model performance is found satisfactory.

Implications: The mathematical model (MADM) is developed by extending the Gaussian equation particularly when examining the settling process of important pollutants for the industrial region. Physical removal effects of air pollutants with field data have been considerred for the MADM development and for an extensive field case study. The model is well validated in the field of an open pit mine to assess the regional air quality. The MADA model helps to facilitate the management of the mining industry in doing estimation of emission rate around mining activities and predicting the resulted concentration of air pollutants together in one integrated approach.  相似文献   

5.
6.
Environmental Science and Pollution Research - A Correction to this paper has been published: https://doi.org/10.1007/s11356-021-13137-9  相似文献   
7.
8.
Air Pollution Control model is developed for open-pit metal mines. Model will aid decision makers to select a cost-effective solution. Open-pit metal mines contribute toward air pollution and without effective control techniques manifests the risk of violation of environmental guidelines. This paper establishes a stochastic approach to conceptualize the air pollution control model to attain a sustainable solution. The model is formulated for decision makers to select the least costly treatment method using linear programming with a defined objective function and multi-constraints. Furthermore, an integrated fuzzy based risk assessment approach is applied to examine uncertainties and evaluate an ambient air quality systematically. The applicability of the optimized model is explored through an open-pit metal mine case study, in North America. This method also incorporates the meteorological data as input to accommodate the local conditions. The uncertainties in the inputs, and predicted concentration are accomplished by probabilistic analysis using Monte Carlo simulation method. The output results are obtained to select the cost-effective pollution control technologies for PM2.5, PM10, NOx, SO2 and greenhouse gases. The risk level is divided into three types (loose, medium and strict) using a triangular fuzzy membership approach based on different environmental guidelines. Fuzzy logic is then used to identify environmental risk through stochastic simulated cumulative distribution functions of pollutant concentration. Thus, an integrated modeling approach can be used as a decision tool for decision makers to select the cost-effective technology to control air pollution.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号