首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
综合类   1篇
污染及防治   8篇
评价与监测   3篇
  2012年   1篇
  2009年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 25 毫秒
1.
Two strains of Pseudomonas species (B2 and D5)selected from an array of lead solubilizing and accumulatingbacteria obtained from the effluent contaminated soil samples of abattery manufacturing factory were studied. Increase in pH between 4.0 and 6.0 favoured the growth of isolates: Peaklog10 cfu mL–1 values of 7.1, 7.5 and 8.5 wereobtained at pH 4, 5 and 6, respectively.Cell bound lead concentrations for B2 (0.34 mg mL–1)and D5 (0.30 mg mL–1) obtained by direct contact withPbs were greater than lead concentrations of 0.89 and 0.25 mg mL–1 for B2 and D5, respectively,obtained in dialyzed cultures. These cell bound lead concentration in undialyzed cultures were alsogreater than lead concentrations of 0.03 and 0.07 mg mL–1 for B2 and D5 in culture supernatants. Glucose addition did nor improve lead accumulation in the isolates.Exploitation of such isolates for the biotreatment of lead ladeneffluent was conducted.  相似文献   
2.
Porteous F  Killham K  Meharg A 《Chemosphere》2000,41(10):1549-1554
The flow of carbon from plant roots into soil supports a range of microbial processes and is therefore critical to ecosystem function and health. Pollution-induced stress, which influences rhizosphere C flow is of considerable potential importance, and therefore needs to be evaluated. This paper reports on a method, based on reporter gene technology, for quantifying pollutant effects on rhizosphere C flow. The method uses the lux-marked rhizobacterium Pseudomonas fluorescens, where bioluminescence output of this biosensor is directly correlated with the metabolic activity and reports on C flow in root exudate. Plantago lanceolata was treated with paraquat (representing a model pollutant stress) in a simple microcosm system. The lux-biosensor response correlated closely with C concentrations in the exudate and demonstrated that the pollutant stress increased the C flow from the plantago roots, 24 h after application of the herbicide. The lux-reporter system therefore potentially offers a technique for use in assessing the impact of pollutant stress on rhizosphere C flow through the soil microbial biomass.  相似文献   
3.
Despite the widespread and successful use of luminescence-based bioassays in water testing, their applications to soils and sediments is less proven. In part this is because such bioassays have mainly been carried out in an aqueous-based medium and, as such, favour contaminants that are readily water-soluble. In this study, aqueous solutions and soils contaminated with heavy metals (HM), polar organic contaminants and hydrophobic organic contaminants (HOCs) were tested using a range of luminescence-based bioassays (Vibrio fischeri, Escherichia coli HB101 pUCD607 and Pseudomonas fluorescens 10586r pUCD607). For the first two chemical groups, the assays were highly reproducible when optimised extraction procedures were employed but for HOCs the bioassay response was poor. Quantitative structure-activity relationships (QSARs) obtained from aqueous solutions had a linear response although correlation for the chemicals tested using bacterial bioassays was significantly less sensitive than that of sublethal tests for Tetrahymena pyriformis. Bacterial and Dendrobaena veneta bioassay responses to extracts from HM amended soils showed that a clear relationship between trophic levels could be obtained. There is no doubt that the wide range of bioluminescent-based bioassays offers complementary applications to traditional testing techniques but there is a significant need to justify and optimise the extraction protocol prior to application.  相似文献   
4.
Chinalia FA  Killham KS 《Chemosphere》2006,64(10):1675-1683
A bench-scale study was conducted to investigate 2,4-D biodegradation rates at different concentrations (10, 100 and 1000 microg per gram of dry weight) in distinct sediments samples collected on the River Ythan, Northeast-Scotland. Mineralisation of 14C 2,4-D occurred mostly within 30 days for all tested concentrations with a degradation rate ranging from 5 to 750 microg d(-1). Biodegradation rates were affected by the biological and biochemical characteristics of the indigenous microbial community in the studied sediments rather than factors such as compound bioavailability and/or toxicity. PLFA-profiling provided evidences of the effect of 2,4-D amendments on the microbial communities and DGGE-profiling showed changes in the genetic potential of the microbial populations which might affect metabolic characteristics of the sediment. PLFAs biomarkers suggested that the pathway of alpha-ketoglutarate-dependent dioxygenase was the main route of 2,4-D biodegradation. This pathway is commonly found in microorganisms of the beta-subdivision of proteobacteria.  相似文献   
5.
6.
Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-beta-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0x10(-6)-1.0x10(-3)mM for benzo[a]pyrene and 6.0x10(-6)-1.2x10(-3)mM for pyrene in 10mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9x10(-6) and 5.4x10(-6)mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-beta-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil.  相似文献   
7.
Photoelectrocatalysis driven by visible light offers a new and potentially powerful technology for the remediation of water contaminated by organo-xenobiotics. In this study, the performance of a visible light-driven photoelectrocatalytic (PEC) batch reactor, applying a tungsten trioxide (WO3) photoelectrode, to degrade the model pollutant 2,4-dichlorophenol (2,4-DCP) was monitored both by toxicological assessment (biosensing) and chemical analysis. The bacterial biosensor used to assess the presence of toxicity of the parent molecule and its breakdown products was a multicopy plasmid lux-marked E. coli HB101 pUCD607. The bacterial biosensor traced the removal of 2,4-DCP, and in some case, its toxicity response suggests the identification of transient toxic intermediates. The loss of the parent molecule, 2,4-DCP determined by HPLC, corresponded to the recorded photocurrents. Photoelectrocatalysis offers considerable potential for the remediation of chlorinated hydrocarbons, and that the biosensor based toxicity results identified likely compatibility of this technology with conventional, biological wastewater treatment.  相似文献   
8.
Shallow groundwater beneath a former airfield site in southern England has been heavily contaminated with a wide range of chlorinated solvents. The feasibility of using bacterial biosensors to complement chemical analysis and enable cost-effective, and focussed sampling has been assessed as part of a site evaluation programme. Five different biosensors, three metabolic (Vibrio fischeri, Pseudomonas fluorescens 10568 and Escherichia coli HB101) and two catabolic (Pseudomonas putida TVA8 and E. coli DH5alpha), were employed to identify areas where the availability and toxicity of pollutants is of most immediate environmental concern. The biosensors used showed different sensitivities to each other and to the groundwater samples tested. There was generally a good agreement with chemical analyses. The potential efficacy of remediation strategies was explored by coupling sample manipulation to biosensor tests. Manipulation involved sparging and charcoal treatment procedures to simulate remediative engineering solutions. Sparging was sufficient at most locations.  相似文献   
9.
Dams RI  Paton GI  Killham K 《Chemosphere》2007,68(5):864-870
Sphingobium chlorophenolicum is well known as a pentachlorophenol (PCP) degrader. The objective of this study was to evaluate PCP degradation in a loamy sandy soil artificially contaminated with PCP using phytoremediation and bioaugmentation. Measurements of PCP concentrations were carried out using high performance liquid chromatography analyses (HPLC). The toxic effect of PCP on plants was studied through the monitoring of weight plant and root length. The biodegradation of PCP by S. chlorophenolicum in soil was assessed with a bioluminescence assay of Escherichia coli HB101 pUCD607. Bacterial analyses were carried out by plating on Mineral Salt Medium (MSM) for S. chlorophenolicum, MSM for PCP-degrading/tolerant organisms and Trypticase Soy Broth Agar (TSBA) for heterotrophic organisms. The introduction of S. chlorophenolicum into soil with plants showed a faster degradation when compared to the non-inoculated soil. The monitoring of the plant growth showed a protective role of S. chlorophenolicum against the toxicity of PCP. The bioassay confirmed that initial toxicity was lowered while degradation progressed. There was a significant increase of organisms tested in the roots in comparison to those in the soil. This study showed that the presence of S. chlorophenolicum enhanced the PCP degradation in a loamy soil and also it had a protective role to prevent phytotoxic effects of PCP on plant growth. The combined use of bioaugmentation and plants suggests that the rhizosphere of certain plant species may be important for facilitating microbial degradation of pesticides in soil with important implications for using vegetation to stabilize and remediate surface soils.  相似文献   
10.
Benzo[a]pyrene (BaP) is a significant environmental pollutant and rapid, accurate methods to quantify this compound in soil for both research and environmental investigation purposes are required. In this work, solvent extracts from five contrasting soils spiked with four different polycyclic aromatic hydrocarbons (PAHs) were rapidly analysed by using a synchronous fluorescence spectroscopy (SFS) method. The SFS method was validated using HPLC with ultraviolet detection. A good correlation for the quantification of BaP in soil extracts by the two methods was observed. The detection limit of the SFS method was 1.6 x 10(-9) g/ml in CTAB micellar medium (7.8 mmol/l). The work demonstrates that SFS has potential as a sensitive, accurate, rapid, simple and economic methodology and an efficient alternative to HPLC for fast confirmation and quantification of BaP in complex soil extracts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号